Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 619-631    DOI: 10.11900/0412.1961.2023.00177
  研究论文 本期目录 | 过刊浏览 |
纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能
杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏()
安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002
Mechanical Alloying Fabrication of Nano-ZrB2-Reinforced CoNiCrAlY Composite Powders and Microstructure-Property Characterization of the Resultant Coatings
YANG Kang, XIN Yue, JIANG Zitao, LIU Xia, XUE Zhaolu, ZHANG Shihong()
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China
引用本文:

杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
Kang YANG, Yue XIN, Zitao JIANG, Xia LIU, Zhaolu XUE, Shihong ZHANG. Mechanical Alloying Fabrication of Nano-ZrB2-Reinforced CoNiCrAlY Composite Powders and Microstructure-Property Characterization of the Resultant Coatings[J]. Acta Metall Sin, 2025, 61(4): 619-631.

全文: PDF(6335 KB)   HTML
摘要: 

针对高温炉辊在高温重载环境下的氧化、磨损等失效问题,采用一步式和分步式机械合金化(MA)工艺分别合成了2种CoNiCrAlY-20%ZrB2 (质量分数)复合粉末并制备成涂层,对其组织和性能进行了研究。结果表明,用分步式MA成功合成了纳米ZrB2增强的CoNiCrAlY复合粉末,较一步式球磨,分步式球磨的ZrB2颗粒更加均匀地分布在金属基体相中。分步式MA球磨35 h复合粉末的平均粒径符合超音速火焰喷涂(HVOF)要求。采用HVOF制备复合涂层,发现分步式MA粉末制备的涂层熔化状态较一步式MA粉末制备的涂层更好,且分步式涂层孔隙率更低、硬度更高、韧性更强。2种涂层在750 ℃以上均具有良好的自润滑能力,且在950 ℃时涂层表面形成了连续完整的“上釉层”。950 ℃时分步式涂层磨损率比一步式涂层低了60%,说明在高温环境下分步式涂层具有更好的耐磨性能。此外,与纯CoNiCrAlY涂层相比,纳米ZrB2颗粒加入可以显著提升涂层的高温摩擦磨损性能。

关键词 机械合金化HVOFCoNiCrAlY-ZrB2复合涂层高温摩擦磨损    
Abstract

High-temperature furnace rolls are subjected to extreme conditions, including high temperatures and heavy loads, rendering them susceptible to oxidation, wear, and other forms of failure. To address these issues, this study investigates the preparation and properties of CoNiCrAlY-ZrB2 composite powders and coatings. CoNiCrAlY serves as the metal matrix, and ZrB2 acts as the ceramic reinforcement phase. Two variants of CoNiCrAlY-20%ZrB2 (mass fraction) composite powders were fabricated using one-step and step-fashion mechanical alloying (MA) techniques (marked by MA-1 and MA-2, respectively). The microstructure and phase composition of the coatings were studied using SEM, XRD, and TEM. Mechanical properties were also investigated. High-temperature friction and wear tests were conducted at 550-950 oC. Results indicate that the particle size of the composite powder decreases with increasing MA time. Step-fashion MA successfully produced ZrB2-reinforced CoNiCrAlY composite powder, with ZrB2 particles evenly distributed throughout the CoNiCrAlY matrix. When alloyed for 35 h, the average particle size (D50 = 38.6 μm) met the specifications for high-velocity oxygen-fuel (HVOF) spraying. CoNiCrAlY-20%ZrB2 composite coatings were then prepared via HVOF spraying. Coatings derived from MA-2 powders exhibited higher melting states, denser microstructures, and lower porosity (0.28%) compared to those made with MA-1 powders. These coatings also displayed superior hardness (738 HV0.3) and fracture toughness (5.21 MPa·m1/2). High-temperature wear resistance was tested for both MA-1 and MA-2 composite coatings. At 950 oC, a protective glazing layer of Al2O3, Cr2O3, and CoCr2O4 was formed on the surface of the composite coatings. The coatings demonstrated effective self-lubrication at 750 oC due to the formation of the “glazing layer”. Above 750 oC, the MA-2 composite coating outperformed the one-step coating in wear resistance. Specifically, at 950 oC, the wear rate of the MA-2 composite coating was 1.71 × 10-14 m3·N-1·m-1, considerably lower than that of the MA-1 composite coating (4.28 × 10-14 m3·N-1·m-1). In conclusion, the addition of ZrB2 nanoparticles to the CoNiCrAlY coating considerably enhanced its friction and wear properties at high temperatures. The step-fashion mechanical alloying method demonstrated superior coating density, hardness, and high-temperature wear resistance.

Key wordsmechanical alloying    HVOF    CoNiCrAlY-ZrB2 composite coating    high-temperature friction and wear
收稿日期: 2023-04-21     
ZTFLH:  TG174.442  
基金资助:国家自然科学基金项目(U22A20110);安徽省杰出青年项目(2108085J22)
通讯作者: 张世宏,shzhang@ahut.edu.cn,主要从事金属表面科学与技术研究
Corresponding author: ZHANG Shihong, professor, Tel: (0555)2315291, E-mail: shzhang@ahut.edu.cn
作者简介: 杨 康,男,1994年生,博士
PowderCoNiCrAlYBZr
CoNiCrAlYBal.30-3420-236-100.4-0.7--
ZrB2-----0.599.5
表1  CoNiCrAlY粉末及ZrB2陶瓷粉末化学成分 (mass fraction / %)
图1  球磨不同时间后一步式和分步式机械合金化(MA-1和MA-2)工艺制备的复合粉末筛分前表面形貌SEM像
图2  球磨不同时间后MA-1、MA-2复合粉末的平均粒径(D50)及筛分后质量占比
图3  一步式30 h和分步式35 h复合粉末的截面SEM像和EDS元素分布图
图4  CoNiCrAlY、MA-1及MA-2涂层的XRD谱
图5  不同涂层喷涂态的表面形貌及截面形貌
PointMass fraction / %
CoNiCrAlYZrB
11.450.830.520.30-56.5138.26
21.390.920.851.594.5633.9610.44
329.3724.7815.816.730.354.238.14
图6  MA-2涂层的TEM像、HRTEM像及选区电子衍射花样和EDS结果
CoatingPorosity / %Hardness / HV0.3KIC / (MPa·m1/2)Bonding strength / MPa
CoNiCrAlY0.175732.3645.8
MA-10.366724.69> 70
MA-20.287385.21> 70
表2  3种涂层的孔隙率、显微硬度、断裂韧性及结合强度
图7  3种涂层在不同温度下的摩擦系数(COF)曲线
图8  3种涂层在不同温度下的平均COF和磨损率
图9  3种涂层磨痕的2D形貌
图10  不同温度下CoNiCrA1Y涂层的磨损表面形貌SEM像
PointCoNiCrAlZrO
126.5422.7314.816.691.2028.03
229.4225.0016.435.531.0922.54
329.3523.2317.326.630.6722.81
434.9832.6219.1910.200.432.58
520.8012.4414.4425.750.2026.37
614.858.0611.1535.190.4230.32
表3  不同温度下CoNiCrA1Y涂层磨损表面的EDS分析 (mass fraction / %)
PointCoNiCrAlZrO
119.1420.119.687.726.2437.10
237.0930.8420.218.743.13-
323.2620.3012.926.608.5028.44
435.0126.5918.976.829.323.29
520.6817.2311.743.897.9618.12
625.0412.0530.247.274.1021.30
表4  不同温度下MA-1涂层磨损表面的EDS分析 (in Fig.11)(mass fraction / %)
PointCoNiCrAlZrO
121.1918.0611.685.729.2434.10
221.6418.3413.256.1711.1829.42
312.479.709.523.3828.5536.38
440.1330.2921.418.17--
519.5016.3410.665.058.2030.06
622.9411.5528.645.876.2024.80
表5  不同温度下MA-2涂层磨损表面的EDS分析 (mass fraction / %)
图11  不同温度下MA-1涂层的磨损表面形貌SEM像
图12  不同温度下MA-2涂层的磨损表面形貌SEM像
图13  不同温度下涂层摩擦磨损后磨痕的Raman光谱
CoatingCOFWear rateRef.
10-13 m-3·N-1·m-1
CoCrAlYTa-10%Al2O30.430.15[24]
NiCrAlY-Al2O30.450.20[2]
NiCoCrAlY-Al2O30.750.96[5]
CoCrAlYTaSi-Al2O30.350.3[25]
NiCoCrAlY-Al2O3/SiC/CeO20.491.02[19]
0.510.60
0.471.14
CoNiCrAlY-ZrB20.370.25This study
表6  本工作与其他文献报道[2,5,19,24,25]的COF和磨损率比较
1 Matthews S, James B. Review of thermal spray coating applications in the steel industry: Part 1—Hardware in steel making to the continuous annealing process [J]. J. Therm. Spray Technol., 2010, 19: 1267
2 Bolelli G, Candeli A, Lusvarghi L, et al. Tribology of NiCrAlY + Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder + suspension [J]. Wear, 2015, 344-345: 69
3 Hou G L, An Y L, Zhao X Q, et al. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 oC [J]. Acta Mater., 2015, 95: 164
4 Taylor T A, Bettridge D F. Development of alloyed and dispersion-strengthened MCrAlY coatings [J]. Surf. Coat. Technol., 1996, 86-87: 9
5 Zhao L D, Parco M, Lugscheider E. Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating [J]. Surf. Coat. Technol., 2004, 184: 298
6 Taha M A, Youness R A, Zawrah M F. Review on nanocomposites fabricated by mechanical alloying [J]. Int. J. Miner. Metall. Mater., 2019, 26: 1047
7 Suryanarayana C, Al-Joubori A A, Wang Z. Nanostructured materials and nanocomposites by mechanical alloying: An overview [J]. Met. Mater. Int., 2022, 28: 41
doi: 10.1007/s12540-021-00998-5
8 Liu C J, Sun W Y, Chen M H, et al. High-temperature oxidation behavior of spark plasma sintered Ni20Cr-xAl alloys [J]. Acta Metall. Sin., 2024, 60: 485
8 刘丞济, 孙文瑶, 陈明辉 等. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为 [J]. 金属学报, 2024, 60: 485
doi: 10.11900/0412.1961.2022.00240
9 Bi S, Li Z C, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
doi: 10.11900/0412.1961.2020.00238
9 毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57: 71
10 Niespodziana K, Jurczyk K, Jakubowicz J, et al. Fabrication and properties of titanium-hydroxyapatite nanocomposites [J]. Mater. Chem. Phys., 2010, 123: 160
11 Cen S B, Chen H, Liu Y, et al. Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel [J]. Acta Metall. Sin., 2016, 52: 1441
11 岑升波, 陈 辉, 刘 艳 等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响 [J]. 金属学报, 2016, 52: 1441
doi: 10.11900/0412.1961.2016.00031
12 Hou G L, Zhou H D, An Y L, et al. Microstructure and high-temperature friction and wear behavior of WC-(W, Cr)2C-Ni coating prepared by high velocity oxy-fuel spraying [J]. Surf. Coat. Technol., 2011, 206: 82
13 Silveira L L, Sucharski G B, Pukasiewicz A G M, et al. Influence of particle size distribution on the morphology and cavitation resistance of high-velocity oxygen fuel coatings [J]. J. Therm. Spray Technol., 2018, 27: 695
14 Liu M T, Zhong X C, Wang J, et al. Microstructure and thermal stability of MoSi2-CoNiCrAlY nanocomposite feedstock prepared by high energy ball milling [J]. Surf. Coat. Technol., 2014, 239: 78
15 Richer P, Zúñiga A, Yandouzi M, et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying [J]. Surf. Coat. Technol., 2008, 203: 364
16 Tahari M, Shamanian M, Salehi M. Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method [J]. J. Alloys Compd., 2012, 525: 44
17 Hernández G I V, Albarrán M A G, de Anda E R, et al. Microstructural and high-temperature cyclic oxidation response of NiCoCrAlY coatings with and without SiC + ZrB2 reactive-element dispenser [J]. Corros. Sci., 2021, 189: 109617
18 Bobzin K, Schläfer T, Richardt K, et al. Development of oxide dispersion strengthened MCrAlY coatings [J]. J. Therm. Spray Technol., 2008, 17: 853
19 Wang H Y, Zuo D W, Wang M D, et al. High temperature frictional wear behaviors of nano-particle reinforced NiCoCrAlY cladded coatings [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1322
20 Houdková Š, Kašparová M. Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings [J]. Eng. Fract. Mech., 2013, 110: 468
21 Wood P D, Evans H E, Ponton C B. Investigation into the wear behaviour of Stellite 6 during rotation as an unlubricated bearing at 600 oC [J]. Tribol. Int., 2011, 44: 1589
22 Inman I A, Rose S R, Datta P K. Studies of high temperature sliding wear of metallic dissimilar interfaces Ⅱ: Incoloy MA956 versus Stellite 6 [J]. Tribol. Int., 2006, 39: 1361
23 Wood P D, Evans H E, Ponton C B. Investigation into the wear behaviour of Tribaloy 400 oC during rotation as an unlubricated bearing at 600 oC [J]. Wear, 2010, 269: 763
24 Wei Z, Wu Y P, Hong S, et al. Effects of temperature on wear properties and mechanisms of HVOF sprayed CoCrAlYTa-10%Al2O3 coatings and H13 steel [J]. Metals, 2019, 9: 1224
25 Zhou W T, Kong D J. Influence of Al2O3 mass fractions on microstructure, oxidation resistance and friction-wear behaviors of CoCrAlYTaSi coatings [J]. Surf. Coat. Technol., 2019, 379: 125058
[1] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[2] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[3] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[4] 王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
[5] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[6] 邓小霞; 程宏辉; 李慎兰; 吕曼祺; 陈德敏; 杨柯 . 吸、放氢循环对V及V0.9Cr0.1合金储氢性能的影响[J]. 金属学报, 2007, 43(9): 977-982 .
[7] 张来昌; 沈智奇; 徐坚 . Sn替代Si和B对Ti50Ni22Cu18Al4Si4B2合金机械研磨非晶化的促进作用[J]. 金属学报, 2004, 40(9): 981-986 .
[8] 张晓强; 徐; 坚 . 机械研磨形成W颗/La55Al25Cu10Ni5Co5金属玻璃基复合材料[J]. 金属学报, 2004, 40(6): 647-.
[9] 张来昌; 沈智奇; 徐坚 . (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al}多组元合金体系的机械驱动非晶化[J]. 金属学报, 2004, 40(4): 421-428 .
[10] 付广艳; 宋尽霞; 牛焱 . 机械合金化Ag-3OCr合金在0.1 MPa纯氧气中的氯化[J]. 金属学报, 2003, 39(9): 995-998 .
[11] 王延玲; 徐坚; 杨锐 . 机械研磨Tix(Cu0.45Ni0.55)94-xSi4B2合金系的玻璃形成范围[J]. 金属学报, 2003, 39(4): 364-368 .
[12] 曾美琴; 张耀; 欧阳柳章; 罗堪昌; 朱敏 . 机械合金化制备的Al-Pb-Cu合金结构与摩擦性能[J]. 金属学报, 2002, 38(8): 814-818 .
[13] 张来昌; 徐坚 . 高能球磨形成具有明显玻璃转变的Ti50Cu20Ni24Si4B2非晶态合金[J]. 金属学报, 2002, 38(3): 299-302 .
[14] 柳林 . 氧对Mo-Si系机械合金化的影响[J]. 金属学报, 2001, 37(9): 1001-1004 .
[15] 杨福宝; 郭建亭; 周继扬 . 机械合金化合成NiAl/HfB2复合材料的组织与力学性能[J]. 金属学报, 2001, 37(5): 483-487 .