Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 154-166    DOI: 10.11900/0412.1961.2022.00309
  研究论文 本期目录 | 过刊浏览 |
一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制
谭子昊1,2, 李永梅1,2, 王新广1(), 赵浩川3, 谭海兵3, 王标3, 李金国1, 周亦胄1, 孙晓峰1()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国航发四川燃气涡轮研究院 成都 610500
In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy
TAN Zihao1,2, LI Yongmei1,2, WANG Xinguang1(), ZHAO Haochuan3, TAN Haibing3, WANG Biao3, LI Jinguo1, ZHOU Yizhou1, SUN Xiaofeng1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Institute of Sichuan Gas Turbine Research, Aero Engine Corporation of China, Chengdu 610500, China
引用本文:

谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
Zihao TAN, Yongmei LI, Xinguang WANG, Haochuan ZHAO, Haibing TAN, Biao WANG, Jinguo LI, Yizhou ZHOU, Xiaofeng SUN. In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy[J]. Acta Metall Sin, 2024, 60(2): 154-166.

全文: PDF(5938 KB)   HTML
摘要: 

热机械疲劳是单晶高温合金在实际服役过程中的一种重要损伤模式,澄清合金的热机械疲劳行为及损伤机制对于提升单晶高温合金的服役可靠性具有重要意义。本工作以先进航空发动机高压涡轮叶片用第四代单晶高温合金DD91为对象,采用SEM、EBSD、TEM等手段研究了合金在600~1000℃下的同相位热机械疲劳断裂特征及损伤机理。结果表明,随应变幅的升高,合金的疲劳寿命大幅下降,迟滞曲线明显张开,且应力响应行为由高温半周循环软化和低温半周循环硬化转变为以循环稳定为主导的特征。在不同应变幅下疲劳断裂后,合金断口呈韧性断裂特征,随应变幅的升高,韧窝区面积分数不断下降。在低应变幅下,合金主要承受氧化损伤,并伴随一定程度的蠕变损伤,合金的主要变形机制为位错在γ基体中滑移,并以Orowan机制绕过γ'强化相;而在高应变幅下,合金承受严重的塑性变形损伤而氧化损伤程度减轻,此时界面位错能够以生成层错或反相畴界的形式切割γ'相。另外,合金在不同应变幅下循环至断裂后,均未出现再结晶晶粒和变形孪晶。

关键词 第四代单晶高温合金热机械疲劳断裂特征氧化行为损伤机制    
Abstract

During the service, the turbine blades of aero-engines are subjected to a complex and ever-changing combination of temperature and stress, resulting in severe cyclic temperature/strain damages and thermal-mechanical fatigue (TMF) failures of the alloy. In this work, in-phase (IP) TMF tests under 600-1000oC were conducted on a newly developed fourth-generation single-crystal superalloy. The alloy's fracture characteristics and comprehensive damage mechanisms were examined via SEM, EBSD, and TEM. The results showed that when the strain range increased, the fatigue life of the experimental alloy noticeably decreased, and the hysteresis loop clearly opened. Stress response behaviors shifted from cyclic softening at high temperatures and cyclic hardening at low temperatures into a dominant characteristic of cyclic stabilizing. The fracture surfaces of alloys displayed ductile features after fatigue fracture under various circumstances, and the area fraction of dimples reduced with increasing strain amplitude. When the strain amplitude was low, the alloy was mainly subjected to oxidation damage, accompanied with a certain degree of creep damage. In contrast, the dominant deformation mechanism of the alloy was dislocation slipping in γ matrix and Orowan by-passing through γ' particles. As the strain amplitude increased to higher levels, the alloy was subjected to severe plastic deformation damage, while the degree of oxidation damage had been alleviated. Under this condition, the interfacial dislocations could shear into the γ' phase with the generated stacking fault or anti-phase boundary. Notably, no recrystallization grains or deformation twins were formed in the DD91 alloy during the IP-TMF experiments at different mechanical strain amplitudes.

Key wordsfourth-generation single-crystal superalloy    thermal-mechanical fatigue    fracture characteristic    oxidation behavior    damage mechanism
收稿日期: 2022-06-22     
ZTFLH:  TG132.32  
基金资助:国家科技重大专项项目(2017-VI-0002-0072);国家重点研发计划项目(2017YFA0700704);中国科学院青年创新促进会项目
通讯作者: 王新广,xgwang11b@imr.ac.cn,主要从事单晶高温合金设计与应用研究;
孙晓峰,xfsun@imr.ac.cn,主要从事铸造高温合金研发与工程化应用研究
Corresponding author: WANG Xinguang, professor, Tel: (024)23971887, E-mail: xgwang11b@imr.ac.cn;
SUN Xiaofeng, professor, Tel: (024)23971807, E-mail: xfsun@imr.ac.cn
作者简介: 谭子昊,男,1994年生,博士生
图1  DD91合金标准热处理流程图
图2  热机械疲劳试样尺寸示意图
图3  DD91合金标准热处理后的γ /γ'两相组织
图4  DD91合金在不同应变幅下的同相位热机械疲劳(IP-TMF)循环应力响应曲线
图5  DD91合金在不同应变幅IP-TMF过程第1 cyc及循环稳定时的迟滞回线
图6  DD91合金在不同应变幅IP-TMF断裂后纵截面((011)面)的SEM像
图7  DD91合金在不同应变幅下IP-TMF失效断裂后的表面裂纹形貌及对应的反极图(IPF)、局部取向差(KAM)和晶内参考取向差(GROD)图
图8  DD91合金在不同应变幅下IP-TMF失效断裂后的断口形貌
图9  DD91合金IP-TMF断口外表面形貌及表面氧化产物分布特征
图10  DD91合金在0.5%和0.8%应变幅IP-TMF疲劳断裂后表面EDS分析
图11  DD91合金在不同应变幅下IP-TMF断裂后的特征位错组态
Strain amplitude %Maximum crack size on outer surface / μm

Number of internal crack

(Within 1 mm from crack surface)

0.5210.9232 ± 3
0.6151.4235 ± 4
0.827.2958 ± 5
0.949.1088 ± 7
表1  DD91合金在不同应变幅下IP-TMF断裂后的外表面最长裂纹尺寸及内部裂纹数量
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 20
2 Li J R, Dong J M, Han M, et al. Effects of sand blasting on surface integrity and high cycle fatigue properties of DD6 single crystal superalloy [J]. Acta Metall. Sin., 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
2 李嘉荣, 董建民, 韩 梅 等. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响 [J]. 金属学报, 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
3 Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1109
doi: 10.11900/0412.1961.2023.00140
3 张 健, 王 莉, 谢 广 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2023, 59: 1109
4 Xu J H, Li L F, Liu X G, et al. Thermal-stress coupling effect on microstructure evolution of a fourth-generation nickel-based single-crystal superalloy at 1100oC [J]. Acta Metall. Sin., 2021, 57: 205
4 徐静辉, 李龙飞, 刘心刚 等. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响 [J]. 金属学报, 2021, 57: 205
5 Ratel N, Demé B, Bastie P, et al. In situ SANS investigation of the kinetics of rafting of γ′ precipitates in a fourth-generation single-crystal nickel-based superalloy [J]. Scr. Mater., 2008, 59: 1167
doi: 10.1016/j.scriptamat.2008.07.031
6 Zhang J X, Murakumo T, Köizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
doi: 10.1016/S1359-6454(03)00355-0
7 Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ /γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng., 2011, A528: 3435
8 Zhao P, Xie G, Duan H C, et al. Recrystallization during thermo-mechanical fatigue of two high-generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1221
doi: 10.11900/0412.1961.2023.00173
8 赵 鹏, 谢 光, 段慧超 等. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为 [J]. 金属学报, 2023, 59: 1221
9 Liu L, Meng J, Liu J L, et al. Investigation on low cycle fatigue behaviors of the [001] and [011] oriental single crystal superalloy at 760oC [J]. Mater. Sci. Eng., 2018, A734: 1
10 Liu L, Meng J, Liu J L, et al. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35: 1917
doi: 10.1016/j.jmst.2019.05.026
11 Han G M, Yu J J, Sun X F, et al. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2011, A528: 6217
12 Moverare J J, Johansson S, Reed R C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy [J]. Acta Mater., 2009, 57: 2266
doi: 10.1016/j.actamat.2009.01.027
13 Zhang J X, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy [J]. Scr. Mater., 2006, 54: 655
doi: 10.1016/j.scriptamat.2005.10.030
14 Fu B D, Zhang J X, Harada H. Significant thinning of deformation twins and its effect on thermomechanical fatigue fracture in nickel base single crystal superalloys [J]. Mater. Sci. Eng., 2014, A605: 253
15 Sun F, Zhang J X, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling [J]. Acta Mater., 2014, 67: 45
doi: 10.1016/j.actamat.2013.12.011
16 Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
17 Jing F L, Jiang K H, Zhang B, et al. Experiment on thermomechanical fatigue in nickel based single crystal superalloy DD6 [J]. J. Aeros. Power, 2018, 33: 2965
17 荆甫雷, 蒋康河, 张 斌 等. 镍基单晶高温合金DD6热机械疲劳试验 [J]. 航空动力学报, 2018, 33: 2965
18 Segersäll M, Moverare J J, Leidermark D, et al. In- and out-of-phase thermomechanical fatigue of a Ni-based single-crystal superalloy [A]. EUROSUPERALLOYS 2014—2nd European Symposium on Superalloys and Their Applocations [C]. MATEC Web of Conf., 2014, 14: 19003
19 Wang Y C, Li S X, Ai S H, et al. Thermo-mechanical fatigue behaviours of DD8 single crystal nickel base superalloy [J]. Acta Metall. Sin., 2003, 39: 903
19 王跃臣, 李守新, 艾素华 等. DD8单晶镍基高温合金的热机械疲劳 [J]. 金属学报, 2003, 39: 903
20 Lee D, Shin I, Kim Y, et al. A study on thermo mechanical fatigue life prediction of Ni-base superalloy [J]. Int. J. Fatigue, 2014, 62: 62
doi: 10.1016/j.ijfatigue.2013.10.011
21 Yu J J, Han G M, Chu Z K, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy [J]. Mater. Sci. Eng., 2014, A592: 164
22 Hu Y B, Zhang L, Cao T S, et al. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2018, A728: 124
23 Xiong J C, Li J R, Sun F L, et al. Microstructure of recrystallization and their effects on stress rupture property of single crystal superalloy DD6 [J]. Acta Metall. Sin., 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
23 熊继春, 李嘉荣, 孙凤礼 等. 单晶高温合金DD6再结晶组织及其对持久性能的影响 [J]. 金属学报, 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
24 Tan Z H, Wang X G, Song W, et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature [J]. Vacuum, 2020, 175: 109284
doi: 10.1016/j.vacuum.2020.109284
25 Caron P, Ramusat C, Diologent F. Influence of the γ′ fraction on the γ /γ′ topological inversion during high temperature creep of single crystal superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 159
26 Zhou H, Harada H, Ro Y, et al. Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys [J]. Mater. Sci. Eng., 2005, A394: 161
27 Liu B, Raabe D, Roters F, et al. Interfacial dislocation motion and interactions in single-crystal superalloys [J]. Acta Mater., 2014, 79: 216
doi: 10.1016/j.actamat.2014.06.048
28 Zhou L, Li S X, Wang Y C, et al. Calculation of the internal stresses at the γ /γ′ interface of DD8 single crystal nickel base superalloy after thermomechanical fatigue [J]. Acta Metall. Sin., 2005, 41: 245
28 周 丽, 李守新, 王跃臣 等. DD8单晶镍基高温合金热机械疲劳后γ /γ′界面位错网产生内应力的计算 [J]. 金属学报, 2005, 41: 245
29 Yang W C, Qu P F, Liu C, et al. Temperature dependence of compressive behavior and deformation microstructure of Ni-based single crystal superalloy with low stacking fault energy [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 157
doi: 10.1016/S1003-6326(22)66097-7
30 Wang X G, Liu J L, Liu J D, et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature [J]. Scr. Mater., 2018, 152: 94
doi: 10.1016/j.scriptamat.2018.04.020
31 Shimabayashi S, Kakehi K. Effect of ruthenium on compressive creep of Ni-based single-crystal superalloy [J]. Scr Mater., 2010, 63: 909
doi: 10.1016/j.scriptamat.2010.06.048
32 Epishin A, Link T, Nolze G. SEM investigation of interfacial dislocations in nickel-base superalloys [J]. J. Microsc., 2007, 228: 110
doi: 10.1111/jmi.2007.228.issue-2
33 Tsuno N, Shimabayashi S, Kakehi K, et al. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 433
34 Hong H U, Yoon J G, Choi B G, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2014, 69: 22
doi: 10.1016/j.ijfatigue.2013.01.015
35 Huang L, Sun X F, Guan H R, et al. Effect of rhenium addition on isothermal oxidation behavior of single-crystal Ni-based superalloy [J]. Surf. Coat. Technol., 2006, 200: 6863
doi: 10.1016/j.surfcoat.2005.10.037
36 Pahlavanyali S, Drew G, Rayment A, et al. Oxidation assisted thermomechanical fatigue failure of polycrystalline superalloys [J]. Mater. Sci. Technol., 2007, 23: 1454
doi: 10.1179/174328407X244004
37 Liu C T, Ma J, Sun X F. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000oC in air [J]. J. Alloys Compd., 2010, 491: 522
doi: 10.1016/j.jallcom.2009.10.261
38 Segersäll M, Kontis P, Pedrazzini S, et al. Thermal-mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying [J]. Acta Mater., 2015, 95: 456
doi: 10.1016/j.actamat.2015.03.060
39 Segersäll M, Moverare J J, Simonsson K, et al. Deformation and damage mechanisms during thermomechanical fatigue of a single-crystal superalloy in the <001> and <011> directions [A]. Superalloy 2012 [C]. Warrendale, PA: TMS, 2012: 215
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[4] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[5] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[6] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[7] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[8] 张来启,潘昆明,段立辉,林均品. 原位合成MoSi2-SiC复合材料在500℃的氧化行为[J]. 金属学报, 2013, 49(11): 1303-1310.
[9] 陈竹兵 黄志伟 王中光 朱世杰. 涂覆Ni--Cr--Al--Y涂层的镍基高温合金热机械疲劳行为[J]. 金属学报, 2009, 45(7): 820-825.
[10] 周丽; 李守新; 王跃臣; 王中光 . DD8单晶镍基高温合金热机械疲劳后γ/γ’界面位错网产生内应力的计算[J]. 金属学报, 2005, 41(3): 245-250 .
[11] 王跃臣; 李守新; 艾素华 . 同位相热机械疲劳形变后r/r’相界面上的位错网分析[J]. 金属学报, 2003, 39(3): 237-241 .
[12] 王跃臣; 李守新; 艾素华; 刘峰; 周丽; 张辉 . 单晶镍基高温合金DD8反位相热机械疲劳后的层错[J]. 金属学报, 2003, 39(2): 150-154 .
[13] 刘峰; 艾素华; 王跃臣; 张辉; 王中光 . K417铸造镍基高温合金热机械疲劳行为的研究[J]. 金属学报, 2001, 37(3): 267-271 .
[14] 钱立和; 王中光; 户田裕之; 小林俊郎 . SiC晶须增强6061Al基复合材料的热机械疲劳性能Ⅱ.疲劳寿命与损伤机制[J]. 金属学报, 2001, 37(11): 1203-1207 .
[15] 叶长江;李铁藩;周龙江. 晶粒尺寸对含Zr的Ni_3Al合金氧化行为的影响[J]. 金属学报, 1995, 31(15): 109-115.