Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 167-178    DOI: 10.11900/0412.1961.2023.00026
  研究论文 本期目录 | 过刊浏览 |
GH4151镍基高温合金 μ 相中的基面层错
龙江东1,2, 段慧超1(), 赵鹏1,2, 张瑞3, 郑涛1,2, 曲敬龙4,5, 崔传勇3, 杜奎1
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
4 北京钢研高纳科技股份有限公司 北京 100081
5 四川钢研高纳锻造有限责任公司 德阳 618000
Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151
LONG Jiangdong1,2, DUAN Huichao1(), ZHAO Peng1,2, ZHANG Rui3, ZHENG Tao1,2, QU Jinglong4,5, CUI Chuanyong3, DU Kui1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Gaona Materials Co. Ltd., Beijing 100081, China
5 Sichuan CISRI Gaona Forging Co. Ltd., Deyang 618000, China
引用本文:

龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178.
Jiangdong LONG, Huichao DUAN, Peng ZHAO, Rui ZHANG, Tao ZHENG, Jinglong QU, Chuanyong CUI, Kui DU. Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151[J]. Acta Metall Sin, 2024, 60(2): 167-178.

全文: PDF(3753 KB)   HTML
摘要: 

晶界析出相对变形高温合金的力学性能有重要影响。本工作采用像差校正透射电镜观察发现,μ相中存在大量基面层错,依据层错结构单元排列的不同将基面层错分为4类。与μ相结构相比,I型基面层错相当于一层平行四边形结构单元反向;II型基面层错相当于在I型基面层错的基础上缺失一层矩形结构单元,形成C14结构;μ相内单独缺失一层平行四边形结构单元或矩形结构单元后相应地会形成III型和IV型基面层错,分别形成完整Zr4Al3相和C15结构。其中,II型和IV型基面层错都会形成Laves相,统计发现前者的数量多于后者。第一性原理计算表明,这与II型基面层错(C14结构)的稳定性高于IV型基面层错(C15结构)有关。

关键词 镍基变形高温合金μ像差校正透射电镜基面层错C14结构    
Abstract

Wrought Ni-based superalloys are widely used in aviation and energy fields because of their excellent creep resistance, thermal stability, heat corrosion resistance, and oxidation resistance at high temperatures. The mechanical properties of wrought Ni-based superalloys are significantly affected by grain boundary precipitation. Among the grain boundary second phases, the topologically close-packed (TCP) phase is usually discovered in wrought superalloys with the addition of refractory metal elements. As a complex intermetallic compound with only tetrahedral interstices, the TCP phase is stacked with a high packing density of atoms, embodying low plasticity and high brittleness. Given these characteristics, the TCP phase tends to promote crack initiation and propagation during creep, thereby reducing the alloy's creep strength. Additionally, the formation of the TCP phase requires several refractory elements, thereby weakening the effect of the solid solution strengthening of the matrix. As a ubiquitous TCP phase in wrought superalloys, μ phases are represented by rectangular and parallelogram structural subunits, which are parallel to the basal plane of μ phases. Basal stacking faults (SFs) are the most common defects in the μ phase, and SFs with different stacking sequences will form different phases with corresponding structures and mechanical properties. The μ phases and their basal SFs in wrought Ni-based superalloy GH4151 were systematically studied by multifarious electron microscopy techniques, such as EDS and atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) of aberration-corrected TEM, revealing the structure and composition of the μ phase and the structure and distribution of numerous basal SFs in the μ phase. Based on the different arrangements of structural subunits, the basal SFs were divided into four types. Type I basal SF is equivalent to the μ phase with a layer of parallelogram structural subunit reversing to form two layers of microsymmetric structures, the reversed parallelogram structural subunit is symmetrical to the rectangular one; type II basal SF is equivalent to type I basal SF in the absence of a layer of the rectangular structural subunit, forming a C14 structure and microsymmetric structure; type III basal SF results from the absence of a layer of the parallelogram structural subunit in the μ phase, forming a complete Zr4Al3 phase; and type IV basal SF results from the absence of a layer of the rectangular structural subunit in the μ phase, forming a C15 structure. Among the four types of basal SFs, type II and type IV basal SFs form Laves phases, but the occurrence of the former is more than that of the latter. This finding is related to the stability of type II basal SF (C14 structure) over type IV basal SF (C15 structure) revealed by the first-principle calculations.

Key wordswrought Ni-based superalloy    μ phase    aberration-corrected TEM    basal stacking fault    C14 structure
收稿日期: 2023-01-16     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(52171020);国家自然科学基金项目(91960202);国家科技重大专项项目(2019VI00060120)
通讯作者: 段慧超,hcduan15s@imr.ac.cn,主要从事结构材料形变与相变的定量电子显微学研究
Corresponding author: DUAN Huichao, Tel: (024)83978628, E-mail: hcduan15s@imr.ac.cn
作者简介: 龙江东,男,1998年生,硕士生
图1  时效镍基变形高温合金GH4151样品的EBSD和TEM像
图2  μ相的系列选区电子衍射(SAED)花样,对应的晶带轴分别为[022¯1]、[1¯101]和[2¯64¯1]
图3  μ相的低倍高角度环形暗场扫描透射电子显微镜(HAADF-STEM)像及EDS元素分布图
图4  μ相的原子级HAADF-STEM像及相应元素的面分布
图5  μ相[112¯0]方向的原子级HAADF-STEM像及沿着黄色线条的强度分布,及μ相[112¯0]方向的原子模型(洋红色箭头在图上标出了μ相晶格常数c,红色箭头指出了中心原子和五角反棱柱原子的位置,右下角插图为μ相内五角反棱柱原子和中心原子沿着[112¯0]方向的堆垛)
图6  μ相的TEM明场像及对应的SAED花样
图7  I型基面层错[112¯0]方向的原子级HAADF-STEM像及I型基面层错的原子模型
图8  μ相II型基面层错[112¯0]方向的原子级HAADF-STEM像及II型基面层错的原子模型
图9  μ相中III型基面层错[112¯0]方向的原子级HAADF-STEM像及III型基面层错的原子模型
图10  μ相中IV型基面层错[112¯0]方向的原子级HAADF-STEM像及IV型基面层错的原子模型
StructureC14C15
Cr2Mo10992
Co2Mo-128-103
表1  C14和C15结构的形成能 (meV·atom-1)
图11  不同厚度C14结构[112¯0]方向的原子级HAADF-STEM像(a) 1.5c2 (b) 2c2 (c) 3c2
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 10
2 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 286
2 郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2008: 286
3 Kuo K H, Ye H Q, Li D X. Tetrahedrally close-packed phases in superalloys: New phases and domain structures observed by high-resolution electron microscopy [J]. J. Mater. Sci., 1986, 21: 2597
doi: 10.1007/BF00551462
4 Giessen B C. Developments in the Structural Chemistry of Alloy Phases [M]. Cleveland: Springer, 1969: 30
5 Tian S G, Wang M G, Li T, et al. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys [J]. Mater. Sci. Eng., 2010, A527: 5444
6 Volek A, Singer R F, Buergel R, et al. Influence of topologically closed packed phase formation on creep rupture life of directionally solidified nickel-base superalloys [J]. Metall. Mater. Trans., 2006, 37A: 405
7 Carvalho P A, De Hosson J T M. Stacking faults in the Co7W6 isomorph of the μ phase [J]. Scr. Mater., 2001, 45: 333
doi: 10.1016/S1359-6462(01)01036-3
8 Chisholm M F, Kumar S, Hazzledine P. Dislocations in complex materials [J]. Science, 2005, 307: 701
pmid: 15692046
9 Wang D, Zhang J, Lou L H. On the role of μ phase during high temperature creep of a second generation directionally solidified superalloy [J]. Mater. Sci. Eng., 2010, A527: 5161
10 Zhang Y C, Du K, Zhang W, et al. Shear deformation determined by short-range configuration of atoms in topologically close-packed crystal [J]. Acta Mater., 2019, 179: 396
doi: 10.1016/j.actamat.2019.08.056
11 Zhang W, Yu R, Du K, et al. Undulating slip in Laves phase and implications for deformation in brittle materials [J]. Phys. Rev. Lett., 2011, 106: 165505
doi: 10.1103/PhysRevLett.106.165505
12 Zhang Y C, Zhang W, Du B N, et al. Shuffle and glide mechanisms of prismatic dislocations in a hexagonal C14-type Laves-phase intermetallic compound [J]. Phys. Rev., 2020, 102B: 134117
13 Yang Z Q, Chisholm M F, Yang B, et al. Role of crystal defects on brittleness of C15 Cr2Nb Laves phase [J]. Acta Mater., 2012, 60: 2637
doi: 10.1016/j.actamat.2012.01.030
14 Frank F C, Kasper J S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles [J]. Acta Crystallogr., 1958, 11: 184
doi: 10.1107/S0365110X58000487
15 Frank F C, Kasper J S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures [J]. Acta Crystallogr., 1959, 12: 483
doi: 10.1107/S0365110X59001499
16 Sinha A K. Topologically close-packed structures of transition metal alloys [J]. Prog. Mater. Sci., 1972, 15: 81
doi: 10.1016/0079-6425(72)90002-3
17 Hiraga K, Yamamoto T, Hirabayashi M. Intermetallic compounds of the μ- and P-phases of Co7Mo6 studied by 1 MV electron microscopy [J]. Trans. Jpn Inst. Met., 1983, 24: 421
doi: 10.2320/matertrans1960.24.421
18 Ye H Q, Li D X, Kuo K H. Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms I. Structure description and HREM images of the C14 Laves and μ phases [J]. Philos. Mag., 1985, 51A: 829
19 Heggen M, Houben L, Feuerbacher M. Plastic-deformation mechanism in complex solids [J]. Nat. Mater., 2010, 9: 332
doi: 10.1038/nmat2713 pmid: 20190769
20 Feuerbacher M, Balanetskyy S, Heggen M. Novel metadislocation variants in orthorhombic Al-Pd-Fe [J]. Acta. Mater., 2008, 56: 1849
doi: 10.1016/j.actamat.2007.12.023
21 Zhu J, Ye H Q. On the microstructure and its diffraction anomaly of the μ phase in superalloys [J]. Scr. Metall. Mater., 1990, 24: 1861
doi: 10.1016/0956-716X(90)90041-E
22 Ma S Y, Li X Q, Zhang J X, et al. Atomic arrangement and formation of planar defects in the μ phase of Ni-base single crystal superalloys [J]. J. Alloys Compd., 2018, 766: 775
doi: 10.1016/j.jallcom.2018.07.035
23 Li D X, Kuo K H. Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms III. Domain boundary structures in the μ phase [J]. Philos. Mag., 1985, 51A: 849
24 Cheng Y X, Wang G L, Liu J D, et al. Atomic configurations of planar defects in μ phase in Ni-based superalloys [J]. Scr. Mater., 2021, 193: 27
doi: 10.1016/j.scriptamat.2020.09.045
25 Gao S, Liu Z Q, Li C F, et al. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys [J]. Acta. Mater., 2016, 110: 268
doi: 10.1016/j.actamat.2016.03.046
26 Carvalho P A, Haarsma H S D, Kooi B J, et al. HRTEM study of Co7W6 and its typical defect structure [J]. Acta Mater., 2000, 48: 2703
doi: 10.1016/S1359-6454(00)00064-1
27 Shi T Y, Lu J C, Sun D S, et al. A high N and W heat-resistant martensitic cast steel with balanced tensile strength and creep resistance achieved by Laves and μ intermetallics [J]. J. Mater. Sci., 2022, 57: 12616
doi: 10.1007/s10853-022-07410-6
28 Ye H Q, Wang D N, Kuo K H. Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms II. Domain boundary structures of the CI4 Laves phase [J]. Philos. Mag., 1985, 51A: 839
29 Liu L R, Zhou B X, Wang Q F, et al. Intergrowth structure of Laves within μ phases in Co-Al-W base superalloy [J]. J. Alloys Compd., 2020, 844: 155822
doi: 10.1016/j.jallcom.2020.155822
30 Chen H, Ye L, Han Y, et al. Additive manufacturing of W-Fe composites using laser metal deposition: microstructure, phase transformation, and mechanical properties [J]. Mater. Sci. Eng., 2021, A811: 141036
31 Mittemeijer E J. Fundamentals of Materials Science [M]. Berlin: Springer, 2010: 305
32 Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials [J]. J. Phys. Condens. Matter, 2009, 21: 395502
doi: 10.1088/0953-8984/21/39/395502
33 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
34 Williams D B, Carter C B. Transmission Electron Microscopy [M]. 2nd Ed., New York: Springer, 2009: 419
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 谭海兵, 黄烁, 王静, 李姝, 朱昌洪, 钟燕, 钟世林, 何爱杰. 白斑缺陷对GH4586合金组织和力学性能的影响[J]. 金属学报, 2020, 56(10): 1411-1422.
[3] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[4] 姚志浩 董建新 张麦仓. GH738高温合金热变形过程显微组织控制与预测 I.组织演化模型的构建[J]. 金属学报, 2011, 47(12): 1581-1590.
[5] 姚志浩 王秋雨 张麦仓 董建新. GH738高温合金热变形过程显微组织控制与预测 II.组织演化模型验证与应用[J]. 金属学报, 2011, 47(12): 1591-1599.
[6] 王春水; 彭志方; 于洋洋 . 人工神经网络预测变形高温合金的持久强度[J]. 金属学报, 2003, 39(12): 1251-1254 .