Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1545-1558    DOI: 10.11900/0412.1961.2023.00035
  研究论文 本期目录 | 过刊浏览 |
可降解Zn表面金属-多酚载药涂层骨生成和抗菌性能
林雪1,2, 钱军余1,2, 张文泰1,2, 王鹏1,2, 万国江1,2()
1 西南交通大学 医学院 材料先进技术教育部重点实验室 成都 610031
2 西南交通大学 材料科学与工程学院 成都 610031
Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application
LIN Xue1,2, QIAN Junyu1,2, ZHANG Wentai1,2, WANG Peng1,2, WAN Guojiang1,2()
1 Key Laboratory of Advanced Technologies of Materials (Ministry of Education), College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

林雪, 钱军余, 张文泰, 王鹏, 万国江. 可降解Zn表面金属-多酚载药涂层骨生成和抗菌性能[J]. 金属学报, 2024, 60(11): 1545-1558.
Xue LIN, Junyu QIAN, Wentai ZHANG, Peng WANG, Guojiang WAN. Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application[J]. Acta Metall Sin, 2024, 60(11): 1545-1558.

全文: PDF(5592 KB)   HTML
摘要: 

Zn及其合金因其适中的降解速率和潜在的生物功能性在骨植入体领域展现出广泛的应用前景。然而,其降解过程中存在Zn2+释放过快导致促骨生成能力不足、不均匀腐蚀造成力学性能失效以及较差的抗菌性能等问题,限制了其应用。本工作采用交替沉积法,利用活性金属离子与单宁酸螯合并负载二甲双胍在Zn表面制备金属-多酚载药功能涂层。结果表明,该涂层结构致密,提高了Zn基底的抗腐蚀能力,改善了腐蚀降解模式,延缓Zn2+释放并调控二甲双胍的释放;体外前成骨细胞(MC3T3-E1)培养证实该涂层具有优异的促骨生成能力;抗菌实验结果表明该涂层具有优异的抗菌效果。

关键词 可降解Zn活性金属离子金属-多酚载药涂层促骨生成抗菌性能    
Abstract

Biodegradable metallic Zn materials are being considered for orthopedic implant applications because of their moderate degradation rate and potential bio-functionalities. Nevertheless, their clinical use is limited due to inadequate osteogenic properties owing to Zn2+ burst release, premature mechanical failure caused by non-uniform corrosion, and poor antibacterial ability. Therefore, to overcome these issues, a metal-polyphenol drug-loaded coating was functionalized on the surface using an alternating chemical deposition method out of tannic acid/metformin molecules and active metallic ions via coordination/chelation reactions. The coating was characterized by homogeneous compactness, which enhanced the corrosion resistance of the Zn substrate, adjusted the corrosion mode, suppressed the release of Zn2+, and regulated metformin release. The in vitro pre-osteoblasts (MC3T3-E1) culture results showed that the coated Zn samples exhibited excellent osteogenic ability. The antibacterial assays with coated Zn samples demonstrated strong antibacterial efficiency.

Key wordsbiodegradable Zn    active metallic ion    metal-polyphenol drug-loaded coating    osteogenesis    antibacterial property
收稿日期: 2023-02-02     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2016YFC1102500);四川省科技计划项目(2020YFH0077);四川省科技计划项目(2024YFHZ0310);材料腐蚀与防护四川省重点实验室开放基金项目(2022CL07)
通讯作者: 万国江,guojiang.wan@home.swjtu.edu.cn,主要从事可降解金属材料及表面改性的研究
Corresponding author: WAN Guojiang, professor, Tel: (028)87600723, E-mail: guojiang.wan@home.swjtu.edu.cn
作者简介: 林 雪,女,1996年生,硕士
图1  纯Zn、多酚载药涂层(TA/Met)、金属-多酚载药涂层(Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met)表面形貌的SEM像
图2  纯Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met的FTIR谱
图3  TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met的高分辨XPS
SampleCNOZnM
Zn7.110.1919.5473.16-
TA/Met51.155.6834.318.86-
Cu-TA/Met48.771.9436.5311.481.28
Fe-TA/Met52.122.3230.9410.554.07
Mg-TA/Met44.282.6833.7414.075.23
Sr-TA/Met38.253.1347.357.893.38
表1  样品表面元素含量 (atomic fraction / %)
图4  Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met样品在(37 ± 0.5)℃下Hank's溶液中的动电位极化曲线,自腐蚀电位和自腐蚀电流密度,Nyquist和拟合等效电路图,及Bode-阻抗和Bode-相位角图
Sample

Rs

Ω·cm2

Qp

10-6 S n ·Ω-1·cm-2

Rp

Ω·cm2

Qct

10-6 S n ·Ω-1·cm-2

Rct

Ω·cm2

Zn12.8118.73205.110.2156.42
TA/Met35.6013.58302.124.81218.21
Cu-TA/Met36.689.12545.4324.53487.23
Fe-TA/Met33.0710.08698.126.91521.21
Mg-TA/Met34.213.841221.2423.11825.23
Sr-TA/Met36.583.48843.2523.14731.12
表2  EIS拟合结果
图5  Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met在(37 ± 0.5)℃下Hank's溶液中浸泡21 d后表面形貌的SEM像
图6  纯Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met在(37 ± 0.5)℃下Hank's溶液中浸泡21 d后的XRD谱、Zn2+累计释放量、pH累计变化量和二甲双胍累计释放量
图7  Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met在(37 ± 0.5)℃下Hank's溶液中浸泡21 d去除腐蚀产物后表面形貌的SEM像
图8  MC3T3-E1在不锈钢(SS)、Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met样品表面培养1 d后的荧光图像
图9  MC3T3-E1在SS、Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met样品表面培养1 d后的细胞黏附数量和碱性磷酸酶(ALP)活性定量结果
图10  MC3T3-E1在SS、Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met样品表面培养14 d后的ALP染色结果
图11  金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)在SS、Zn、TA/Met、Cu-TA/Met、Fe-TA/Met、Mg-TA/Met和Sr-TA/Met表面孵育1 d的菌落数和抗菌率
图12  金属-多酚载药涂层的构建机制
1 Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
1 郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
2 Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties [J]. Bioact. Mater., 2020, 5: 210
doi: 10.1016/j.bioactmat.2020.02.010 pmid: 32123774
3 Fang H, Qi X Y, Zhou S C, et al. High-efficient vacuum ultraviolet-ozone assist-deposited polydopamine for poly (lactic-co-glycolic acid)-coated pure Zn toward biodegradable cardiovascular stent applications [J]. ACS Appl. Mater. Interfaces, 2021, 14: 3536
4 Su Y C, Wang K, Gao J L, et al. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials [J]. Acta Biomater., 2019, 98: 174
doi: S1742-7061(19)30231-4 pmid: 30930304
5 Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
doi: 10.1016/j.bioactmat.2020.09.019 pmid: 33102940
6 Han H S, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals [J]. Mater. Today, 2019, 23: 57
7 Sheng Y Y, Yang J J, Zhao X Y, et al. Development and in vitro biodegradation of biomimetic zwitterionic phosphorylcholine chitosan coating on Zn1Mg alloy [J]. ACS Appl. Mater. Interfaces, 2020, 12: 54445
8 Su Y C, Yang H T, Gao J L, et al. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants [J]. Adv. Sci., 2019, 6: 1900112
9 Guillory R J, Sikora-Jasinska M, Drelich J W, et al. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces [J]. ACS Appl. Mater. Interfaces, 2019, 11: 19884
10 Mo X S, Qian J Y, Chen Y Q, et al. Corrosion and degradation decelerating alendronate embedded zinc phosphate hybrid coating on biodegradable Zn biomaterials [J]. Corros. Sci., 2021, 184: 109398
11 Qian J Y, Zhang W T, Chen Y Q, et al. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications [J]. Biomater. Adv., 2022, 136: 212792
12 Zhu L, Tong X, Ye Z Q, et al. Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications [J]. Chem. Eng. J., 2022, 450: 137946
13 Wang B B, Li Y C, Wang S S, et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis [J]. Mater. Sci. Eng., 2021, C129: 112387
14 Li X J, Shi H, Pan K, et al. Improved biocompatibility and antibacterial property of zinc alloy fabricated with γ-polyglutamic acid-g-dopamine/copper coatings for orthopedic implants [J]. Prog. Org. Coat., 2022, 173: 107215
15 Pan K, Zhang W, Shi H, et al. Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy stents by one-step electrophoretic deposition [J]. J. Mater. Chem., 2022, 10B: 3083
16 Lu R F, Zhang X Q, Cheng X X, et al. Medical applications based on supramolecular self-assembled materials from tannic acid [J]. Front. Chem., 2020, 8: 583484
17 Bigham A, Rahimkhoei V, Abasian P, et al. Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing [J]. Chem. Eng. J., 2022, 432: 134146
18 Gan D L, Xing W S, Jiang L L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry [J]. Nat. Commun., 2019, 10: 1487
doi: 10.1038/s41467-019-09351-2 pmid: 30940814
19 Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview [J]. Materials, 2020, 13: 3224
20 Wu Y, Yan R, Duan Y Y, et al. An environmental-friendly tannic acid/Zn conversion film with a good corrosion protection for iron [J]. Surf. Interfaces, 2021, 24: 101078
21 Asgari M, Yang Y, Yang S, et al. Mg-phenolic network strategy for enhancing corrosion resistance and osteocompatibility of degradable magnesium alloys [J]. ACS Omega, 2019, 4: 21931
doi: 10.1021/acsomega.9b02976 pmid: 31891072
22 He M, Yang B, Huo F J, et al. A novel coating with universal adhesion and inflammation-responsive drug release functions to manipulate the osteoimmunomodulation of implants [J]. J. Mater. Chem., 2021, 9B: 5272
23 Chen H Y, Zhan J H, Man L, et al. High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability [J]. Appl. Surf. Sci., 2023, 620: 156838
24 Sharma A, Verma C, Mukhopadhyay S, et al. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system [J]. Int. J. Biol. Macromol., 2022, 216: 303
doi: 10.1016/j.ijbiomac.2022.06.168 pmid: 35777513
25 O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration [J]. Drug Discov. Today, 2018, 23: 879
doi: S1359-6446(17)30328-8 pmid: 29407177
26 Duan J W, Chen Z G, Liang X Y, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease [J]. Biomaterials, 2020, 255: 120199
27 Lei T, Deng S W, Chen P, et al. Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering [J]. Int. J. Biochem. Cell Biol., 2021, 141: 106086
28 Zhang R, Liang Q Y, Kang W Y, et al. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro [J]. Cell Biol. Int., 2020, 44: 70
29 Lin Q X, Zhou Y J, Yin M, et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes [J]. Colloids Surf., 2020, 196B: 111304
30 Zhang H, Luo R F, Li W J, et al. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys [J]. Corros. Sci., 2015, 94: 305
31 Qiu H, Tu Q F, Gao P, et al. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents [J]. Biomaterials, 2021, 269: 120626
32 Al-Saif F A, Refat M S. Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents [J]. J. Therm. Anal. Calorim., 2013, 111: 2079
33 Refat M S, Al-Azab F M, Al-Maydama H M A, et al. Synthesis, spectroscopic and antimicrobial studies of La(III), Ce(III), Sm(III) and Y(III) Metformin HCl chelates [J]. Spectrochim. Acta, 2015, 142A: 392
34 Thompson K H, McNeill J H, Orvig C. Vanadium compounds as insulin mimics [J]. Chem. Rev., 1999, 99: 2561
doi: 10.1021/cr980427c pmid: 11749492
35 Tao S, Hong B, Kerong Z. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+ [J]. Spectrochim. Acta, 2007, 66A: 1364
36 Zhan W W, Gao L, Fu X, et al. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal [J]. Appl. Surf. Sci., 2019, 467-468: 1122
37 Pourzolfaghar H, Hosseini S, Zuki F M, et al. Recent advancements to mitigate zinc oxide formation in zinc-air batteries: A technical review [J]. Mater. Today Commun., 2021, 29: 102954
38 Zhang B, Yao R J, Li L H, et al. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications [J]. ACS Appl. Mater. Interfaces, 2019, 11: 41165
39 Xu K, Zhou M, Li M, et al. Metal-phenolic networks as a promising platform for pH-controlled release of bioactive divalent metal ions [J]. Appl. Surf. Sci., 2020, 511: 145569
40 Yan Y, Chu X, Luo X E, et al. A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case [J]. J. Magnes. Alloys., 2021, 9: 225
41 Zhang W T, Zhao S, Mo X S, et al. Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application [J]. Surf. Coat. Technol., 2021, 413: 127075
42 Almeida L C, Correia R D, Palys B, et al. Comprehensive study of the electrochemical growth and physicochemical properties of polycatecholamines and polycatechol [J]. Electrochim. Acta, 2021, 386: 138515
43 Kasprzak M M, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes [J]. RSC Adv., 2015, 5: 45853
44 Wang X M, Yin Z Z, Yu X T, et al. Comparison of corrosion resistance of phenylalanine, methionine, and asparagine-induced Ca-P coatings on AZ31 magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1258
doi: 10.11900/0412.1961.2021.00058
44 王雪梅, 殷正正, 于晓彤 等. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较 [J]. 金属学报, 2021, 57: 1258
doi: 10.11900/0412.1961.2021.00058
45 Yin Z Z, Zhao W, Xu J, et al. Corrosion resistance of superhydrophobic Mg(OH)2/calcium myristate composite coating on magnesium alloy AZ31 [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1618
46 Tu Q F, Shen X H, Liu Y W, et al. A facile metal-phenolic-amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties [J]. Mater. Chem. Front., 2019, 3: 265
47 Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature [J]. Acta Biomater., 2010, 6: 1882
doi: 10.1016/j.actbio.2009.12.041 pmid: 20040384
48 Pan H B, Li Z Y, Wang T, et al. Nucleation of strontium-substituted apatite [J]. Cryst. Growth Des., 2009, 9: 3342
49 Choi S, Murphy W. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion [J]. J. Mater. Chem., 2012, 22: 25288
pmid: 25663752
[1] 曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.
[2] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[3] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[4] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[5] 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
[6] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[7] 陈四红; 吕曼祺; 张敬党; 董加胜; 杨柯 . 含 Cu抗菌不锈钢的微观组织及其抗菌性能[J]. 金属学报, 2004, 40(3): 314-318 .