|
|
可降解Zn表面金属-多酚载药涂层骨生成和抗菌性能 |
林雪1,2, 钱军余1,2, 张文泰1,2, 王鹏1,2, 万国江1,2( ) |
1 西南交通大学 医学院 材料先进技术教育部重点实验室 成都 610031 2 西南交通大学 材料科学与工程学院 成都 610031 |
|
Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application |
LIN Xue1,2, QIAN Junyu1,2, ZHANG Wentai1,2, WANG Peng1,2, WAN Guojiang1,2( ) |
1 Key Laboratory of Advanced Technologies of Materials (Ministry of Education), College of Medicine, Southwest Jiaotong University, Chengdu 610031, China 2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China |
引用本文:
林雪, 钱军余, 张文泰, 王鹏, 万国江. 可降解Zn表面金属-多酚载药涂层骨生成和抗菌性能[J]. 金属学报, 2024, 60(11): 1545-1558.
Xue LIN,
Junyu QIAN,
Wentai ZHANG,
Peng WANG,
Guojiang WAN.
Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application[J]. Acta Metall Sin, 2024, 60(11): 1545-1558.
1 |
Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
|
1 |
郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
|
2 |
Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties [J]. Bioact. Mater., 2020, 5: 210
doi: 10.1016/j.bioactmat.2020.02.010
pmid: 32123774
|
3 |
Fang H, Qi X Y, Zhou S C, et al. High-efficient vacuum ultraviolet-ozone assist-deposited polydopamine for poly (lactic-co-glycolic acid)-coated pure Zn toward biodegradable cardiovascular stent applications [J]. ACS Appl. Mater. Interfaces, 2021, 14: 3536
|
4 |
Su Y C, Wang K, Gao J L, et al. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials [J]. Acta Biomater., 2019, 98: 174
doi: S1742-7061(19)30231-4
pmid: 30930304
|
5 |
Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
doi: 10.1016/j.bioactmat.2020.09.019
pmid: 33102940
|
6 |
Han H S, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals [J]. Mater. Today, 2019, 23: 57
|
7 |
Sheng Y Y, Yang J J, Zhao X Y, et al. Development and in vitro biodegradation of biomimetic zwitterionic phosphorylcholine chitosan coating on Zn1Mg alloy [J]. ACS Appl. Mater. Interfaces, 2020, 12: 54445
|
8 |
Su Y C, Yang H T, Gao J L, et al. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants [J]. Adv. Sci., 2019, 6: 1900112
|
9 |
Guillory R J, Sikora-Jasinska M, Drelich J W, et al. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces [J]. ACS Appl. Mater. Interfaces, 2019, 11: 19884
|
10 |
Mo X S, Qian J Y, Chen Y Q, et al. Corrosion and degradation decelerating alendronate embedded zinc phosphate hybrid coating on biodegradable Zn biomaterials [J]. Corros. Sci., 2021, 184: 109398
|
11 |
Qian J Y, Zhang W T, Chen Y Q, et al. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications [J]. Biomater. Adv., 2022, 136: 212792
|
12 |
Zhu L, Tong X, Ye Z Q, et al. Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications [J]. Chem. Eng. J., 2022, 450: 137946
|
13 |
Wang B B, Li Y C, Wang S S, et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis [J]. Mater. Sci. Eng., 2021, C129: 112387
|
14 |
Li X J, Shi H, Pan K, et al. Improved biocompatibility and antibacterial property of zinc alloy fabricated with γ-polyglutamic acid-g-dopamine/copper coatings for orthopedic implants [J]. Prog. Org. Coat., 2022, 173: 107215
|
15 |
Pan K, Zhang W, Shi H, et al. Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy stents by one-step electrophoretic deposition [J]. J. Mater. Chem., 2022, 10B: 3083
|
16 |
Lu R F, Zhang X Q, Cheng X X, et al. Medical applications based on supramolecular self-assembled materials from tannic acid [J]. Front. Chem., 2020, 8: 583484
|
17 |
Bigham A, Rahimkhoei V, Abasian P, et al. Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing [J]. Chem. Eng. J., 2022, 432: 134146
|
18 |
Gan D L, Xing W S, Jiang L L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry [J]. Nat. Commun., 2019, 10: 1487
doi: 10.1038/s41467-019-09351-2
pmid: 30940814
|
19 |
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview [J]. Materials, 2020, 13: 3224
|
20 |
Wu Y, Yan R, Duan Y Y, et al. An environmental-friendly tannic acid/Zn conversion film with a good corrosion protection for iron [J]. Surf. Interfaces, 2021, 24: 101078
|
21 |
Asgari M, Yang Y, Yang S, et al. Mg-phenolic network strategy for enhancing corrosion resistance and osteocompatibility of degradable magnesium alloys [J]. ACS Omega, 2019, 4: 21931
doi: 10.1021/acsomega.9b02976
pmid: 31891072
|
22 |
He M, Yang B, Huo F J, et al. A novel coating with universal adhesion and inflammation-responsive drug release functions to manipulate the osteoimmunomodulation of implants [J]. J. Mater. Chem., 2021, 9B: 5272
|
23 |
Chen H Y, Zhan J H, Man L, et al. High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability [J]. Appl. Surf. Sci., 2023, 620: 156838
|
24 |
Sharma A, Verma C, Mukhopadhyay S, et al. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system [J]. Int. J. Biol. Macromol., 2022, 216: 303
doi: 10.1016/j.ijbiomac.2022.06.168
pmid: 35777513
|
25 |
O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration [J]. Drug Discov. Today, 2018, 23: 879
doi: S1359-6446(17)30328-8
pmid: 29407177
|
26 |
Duan J W, Chen Z G, Liang X Y, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease [J]. Biomaterials, 2020, 255: 120199
|
27 |
Lei T, Deng S W, Chen P, et al. Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering [J]. Int. J. Biochem. Cell Biol., 2021, 141: 106086
|
28 |
Zhang R, Liang Q Y, Kang W Y, et al. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro [J]. Cell Biol. Int., 2020, 44: 70
|
29 |
Lin Q X, Zhou Y J, Yin M, et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes [J]. Colloids Surf., 2020, 196B: 111304
|
30 |
Zhang H, Luo R F, Li W J, et al. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys [J]. Corros. Sci., 2015, 94: 305
|
31 |
Qiu H, Tu Q F, Gao P, et al. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents [J]. Biomaterials, 2021, 269: 120626
|
32 |
Al-Saif F A, Refat M S. Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents [J]. J. Therm. Anal. Calorim., 2013, 111: 2079
|
33 |
Refat M S, Al-Azab F M, Al-Maydama H M A, et al. Synthesis, spectroscopic and antimicrobial studies of La(III), Ce(III), Sm(III) and Y(III) Metformin HCl chelates [J]. Spectrochim. Acta, 2015, 142A: 392
|
34 |
Thompson K H, McNeill J H, Orvig C. Vanadium compounds as insulin mimics [J]. Chem. Rev., 1999, 99: 2561
doi: 10.1021/cr980427c
pmid: 11749492
|
35 |
Tao S, Hong B, Kerong Z. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+ [J]. Spectrochim. Acta, 2007, 66A: 1364
|
36 |
Zhan W W, Gao L, Fu X, et al. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal [J]. Appl. Surf. Sci., 2019, 467-468: 1122
|
37 |
Pourzolfaghar H, Hosseini S, Zuki F M, et al. Recent advancements to mitigate zinc oxide formation in zinc-air batteries: A technical review [J]. Mater. Today Commun., 2021, 29: 102954
|
38 |
Zhang B, Yao R J, Li L H, et al. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications [J]. ACS Appl. Mater. Interfaces, 2019, 11: 41165
|
39 |
Xu K, Zhou M, Li M, et al. Metal-phenolic networks as a promising platform for pH-controlled release of bioactive divalent metal ions [J]. Appl. Surf. Sci., 2020, 511: 145569
|
40 |
Yan Y, Chu X, Luo X E, et al. A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case [J]. J. Magnes. Alloys., 2021, 9: 225
|
41 |
Zhang W T, Zhao S, Mo X S, et al. Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application [J]. Surf. Coat. Technol., 2021, 413: 127075
|
42 |
Almeida L C, Correia R D, Palys B, et al. Comprehensive study of the electrochemical growth and physicochemical properties of polycatecholamines and polycatechol [J]. Electrochim. Acta, 2021, 386: 138515
|
43 |
Kasprzak M M, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes [J]. RSC Adv., 2015, 5: 45853
|
44 |
Wang X M, Yin Z Z, Yu X T, et al. Comparison of corrosion resistance of phenylalanine, methionine, and asparagine-induced Ca-P coatings on AZ31 magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1258
doi: 10.11900/0412.1961.2021.00058
|
44 |
王雪梅, 殷正正, 于晓彤 等. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较 [J]. 金属学报, 2021, 57: 1258
doi: 10.11900/0412.1961.2021.00058
|
45 |
Yin Z Z, Zhao W, Xu J, et al. Corrosion resistance of superhydrophobic Mg(OH)2/calcium myristate composite coating on magnesium alloy AZ31 [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1618
|
46 |
Tu Q F, Shen X H, Liu Y W, et al. A facile metal-phenolic-amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties [J]. Mater. Chem. Front., 2019, 3: 265
|
47 |
Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature [J]. Acta Biomater., 2010, 6: 1882
doi: 10.1016/j.actbio.2009.12.041
pmid: 20040384
|
48 |
Pan H B, Li Z Y, Wang T, et al. Nucleation of strontium-substituted apatite [J]. Cryst. Growth Des., 2009, 9: 3342
|
49 |
Choi S, Murphy W. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion [J]. J. Mater. Chem., 2012, 22: 25288
pmid: 25663752
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|