Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1312-1328    DOI: 10.11900/0412.1961.2024.00177
  综述 本期目录 | 过刊浏览 |
机器学习势在铁电材料研究中的应用
刘仕1(), 黄佳玮2, 武静1
1 西湖大学 理学院 物理系 杭州 310030
2 香港大学 机械工程系 香港 999077
Application of Machine Learning Force Fields for Modeling Ferroelectric Materials
LIU Shi1(), HUANG Jiawei2, WU Jing1
1 Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
引用本文:

刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
Shi LIU, Jiawei HUANG, Jing WU. Application of Machine Learning Force Fields for Modeling Ferroelectric Materials[J]. Acta Metall Sin, 2024, 60(10): 1312-1328.

全文: PDF(3312 KB)   HTML
摘要: 

铁电材料作为一类具有自发极化且极化外场可控的功能材料,在非易失信息存储方面有着广阔的应用前景,同时也面临着许多挑战。铁电材料的性能与在外场作用下极化的动力学行为密切相关,在观测精度受限的实验条件下,高精度的原子级材料模拟手段显得尤为重要。分子动力学为在较大的空间和时间尺度上研究材料动力学过程提供了理想的手段,然而受制于传统力场精度差、开发难度高、可移植性差等问题,基于经典力场的分子动力学模拟在新材料上的应用受到了较大的阻碍。机器学习方法的发展为力场开发带来了新的思路。在众多机器学习势中,深度势能(DP)是一种基于深度神经网络的势能模型,具备与密度泛函理论(DFT)相媲美的精度,同时还拥有接近传统经典力场的高效计算性能。本文主要介绍了DP在铁电材料中的开发与应用,通过DP模拟,在原子尺度深入探究铁电材料中的相变机制和极化反转过程。主要工作包括重要铁电材料HfO2、经典钙钛矿铁电材料的深度势开发和测评,基于深度势能分子动力学揭示铁电HfO2中超高O2-迁移率的微观机制,以及SrTiO3极性畴界诱导的挠曲铁电和体光伏效应。

关键词 铁电材料分子动力学机器学习深度势能    
Abstract

Ferroelectric materials, which are characterized by tunable spontaneous polarization, show remarkable application potential for nonvolatile information storage; however they present various challenges. The performance of these materials is strongly influenced by their dynamic polarization behavior under multiple external fields. Due to the limited precision of experimental observations, precise atomic-level material simulations are crucial. Although molecular dynamics (MD) offers an ideal method for investigating material dynamics over a wide spatiotemporal range, its application to new materials is often limited by challenges such as low accuracy, complex development, and limited portability of conventional classical force fields. Advances in machine learning have provided new possibilities for developing force fields. Among different machine learning potentials, deep potential (DP) based on deep neural networks stands out. DP offers accuracy comparable to that of density functional theory while providing computational efficiency similar to that of conventional classical force fields. This review primarily focused on the development and application of DP in ferroelectric materials, specifically examining the phase transition mechanisms and polarization reversal processes at the atomic scale. Considerable efforts have been made to develop and evaluate DP for crucial ferroelectric materials such as hafnium dioxide (HfO2) and classic perovskite ferroelectric materials. Furthermore, this review explores the high oxygen-ion migration kinetics in HfO2 using DP and investigates the flexoelectricity induced by polar domain boundaries and the bulk photovoltaic effects in strontium titanate. By highlighting the use of DP molecular dynamics approaches in ferroelectric materials, this review emphasizes the role of machine learning approaches in optimizing and accelerating material simulations to facilitate further breakthroughs and discoveries.

Key wordsferroelectric material    molecular dynamics    machine learning    deep potential
收稿日期: 2024-05-23     
ZTFLH:  TM22  
基金资助:国家自然科学基金项目(92370104)
通讯作者: 刘 仕,liushi@westlake.edu.cn,主要从事多尺度铁电材料模拟研究
Corresponding author: LIU Shi, professor, Tel: (0571)85273989, E-mail: liushi@westlake.edu.cn
作者简介: 刘 仕,男,1988年生,教授,博士
第一联系人:黄佳玮(共同第一作者),男,1996年生,博士
图1  以PbTiO3为代表的钙钛矿铁电材料结构示意图和铁电相HfO2结构示意图
图2  深度势能(DP)模型原理示意图[98]
图3  深度势能生成器(DP-GEN)框架图[86]
图4  DP模型预测最终训练数据集中所有结构的能量和原子力与密度泛函理论(DFT)结果对比,及绝对误差分布[103]
图5  HfO2不同晶相的状态方程[103],HfO2P21/c、Pbca和Pca21相的声子谱[103],HfO2多种晶相间能垒计算[103],压力为0 GPa时不同温度下O原子沿[010]方向的局域位移(d[010])的概率分布,以及温度升高驱动的晶格常数以及d[010]平均值的变化[103]
图6  模块化开发深度势(ModDP) 策略示意图[105]和UniPero 流程示意图[107]
图7  基于通用原子间势模拟的温度与晶格常数的相关性[107]
图8  反铁电畸变八面体转角(φ)的示意图,深势分子动力学模拟双轴面内应变下SrTiO3 (STO)块体的相图,及STO超胞(5000个原子)在双轴面内应变(-0.8%)条件下极化和ϕ随温度变化的曲线[116]
图9  SrTiO3 (STO)薄膜中畴界格点模型示意图,通过弯曲形变使极性畴界进行90°旋转的示意图,及应变下STO薄膜产生类电滞回线特征[117]
图10  铁电相HfO2的极化反转路径[128]
图11  O2-输运与铁电极化反转的成核和生长机制相耦合[128]
1 Ielmini D, Wong H S P. In-memory computing with resistive switching devices [J]. Nat. Electron., 2018, 1: 333
2 Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics [J]. Nat. Electron., 2018, 1: 442
3 Aggarwal S, Dhote A M, Li H, et al. Conducting barriers for vertical integration of ferroelectric capacitors on Si [J]. Appl. Phys. Lett., 1999, 74: 230
4 Slack J R, Burfoot J C. Flash evaporation of ferroelectric thin films [J]. Thin Solid Films, 1970, 6: 233
5 Mcadams H P, Acklin R, Blake T, et al. A 64-mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process [J]. IEEE J. Solid-State Circuits, 2004, 39: 667
6 Batra I P, Wurfel P, Silverman B D. Phase transition, stability, and depolarization field in ferroelectric thin films [J]. Phys. Rev., 1973, 8B: 3257
7 Wurfel P, Batra I P. Depolarization-field-induced instability in thin ferroelectric films—Experiment and theory [J]. Phys. Rev., 1973, 8B: 5126
8 Schenk T, Schroeder U, Pešić M, et al. Electric field cycling behavior of ferroelectric hafnium oxide [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19744
9 Megaw H D. Crystal structure of barium titanate [J]. Nature, 1945, 155: 484
10 Miyake S, Ueda R. On polymorphic change of BaTiO3 [J]. J. Phys. Soc. Jpn., 1946, 1: 32
11 von Hippel A, Breckenridge R G, Chesley F G, et al. High dielectric constant ceramics [J]. Ind. Eng. Chem., 1946, 38: 1097
12 Shirane G, Hoshino S. On the phase transition in lead titanate [J]. J. Phys. Soc. Jpn., 1951, 6: 265
13 Shirane G, Suzuki K, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study [J]. J. Phys. Soc. Jpn., 1952, 7: 12
14 Moreau J M, Michel C, Gerson R, et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study [J]. J. Phys. Chem. Solids, 1971, 32: 1315
15 Jonker G H, van Santen J H. Properties of barium titanate in connection with its crystal structure [J]. Science, 1949, 109: 632
pmid: 17792404
16 Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss [J]. Science, 2020, 369: 1615
doi: 10.1126/science.abb7167 pmid: 32973026
17 Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592: 381
18 Min H, Lee D Y, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598: 444
19 Liu Z, Qiu W D, Peng X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33: 2103268
20 Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photon., 2018, 12: 681
21 Kim J S, Heo J M, Park G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611: 688
22 Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nat. Commun., 2014, 5: 5404
doi: 10.1038/ncomms6404 pmid: 25410021
23 Deumel S, van Breemen A, Gelinck G, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites [J]. Nat. Electron., 2021, 4: 681
24 Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585: 53
25 Park Y, Kim S H, Lee D, et al. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory [J]. Nat. Commun., 2021, 12: 3527
doi: 10.1038/s41467-021-23871-w pmid: 34112776
26 Choi J, Han J S, Hong K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses [J]. Adv. Mater., 2018, 30: 1704002
27 Fu R J, Zhao W Y, Wang L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light [J]. Angew. Chem. Int. Ed., 2021, 60: 10082
doi: 10.1002/anie.202015395 pmid: 33759324
28 Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2 [J]. Nat. Rev. Mater., 2022, 7: 653
29 Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films [J]. Appl. Phys. Lett., 2011, 99: 102903
30 Park M H, Lee Y H, Mikolajick T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides [J]. Adv. Elect. Mater., 2019, 5: 1800522
31 Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide [J]. Jpn. J. Appl. Phys., 2014, 53: 08LE02
32 Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2 [J]. J. Mater. Chem., 2017, 5C: 333
33 Park M H, Schenk T, Fancher C M, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants [J]. J. Mater. Chem., 2017, 5C: 4677
34 Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films [J]. J. Appl. Phys., 2017, 122: 124104
35 Batra R, Huan T D, Rossetti G A, et al. Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration [J]. Chem. Mater., 2017, 29: 9102
36 Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1 - x Zr x O2: A computational investigation and a surface energy model [J]. J. Appl. Phys., 2015, 117: 134109
37 Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films [J]. Adv. Mater., 2015, 27: 1811
38 Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide [J]. Appl. Phys. Lett., 2015, 106: 232905
39 Batra R, Tran H D, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects [J]. Appl. Phys. Lett., 2016, 108: 172902
40 Künneth C, Materlik R, Kersch A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1 - x Zr x O2 grains [J]. J. Appl. Phys., 2017, 121: 205304
41 Park M H, Lee Y H, Kim H J, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment [J]. Nanoscale, 2017, 9: 9973
doi: 10.1039/c7nr02121f pmid: 28681890
42 Xu L, Nishimura T, Shibayama S, et al. Ferroelectric phase stabilization of HfO2 by nitrogen doping [J]. Appl. Phys. Express, 2016, 9: 091501
43 Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide [J]. Appl. Phys. Lett., 2017, 110: 022903
44 Luo Q, Cheng Y, Yang J G, et al. A highly CMOS compatible hafnia-based ferroelectric diode [J]. Nat. Commun., 2020, 11: 1391
doi: 10.1038/s41467-020-15159-2 pmid: 32170177
45 Bouaziz J, Rojo Romeo P, Baboux N, et al. Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge? [J]. Appl. Phys. Lett., 2021, 118: 082901
46 Wu J X, Mo F, Saraya T, et al. Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application [J]. IEEE Trans. Electron Devices, 2021, 68: 6617
47 Beyer S, Dünkel S, Trentzsch M, et al. FEFET: A versatile CMOS compatible device with game-changing potential [A]. 2020 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2020: 17
48 Huan T D, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia [J]. Phys. Rev., 2014, 90B: 064111
49 Sang X H, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films [J]. Appl. Phys. Lett., 2015, 106: 162905
50 Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance [A]. 2020 IEEE International Electron Devices Meeting (IEDM) [C]. Francisco: IEEE, 2020: 12
51 Ali T, Polakowski P, Riedel S, et al. High endurance ferroelectric hafnium oxide-based FEFET memory without retention penalty [J]. IEEE Trans. Electron Devices, 2018, 65: 3769
52 Xiao W W, Liu C, Peng Y, et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FEFETs with ZrO2 seed layers characterized by fast voltage pulse measurements [J]. Nanoscale Res. Lett., 2019, 14: 254
53 Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon [J]. Naure, 2020, 580: 478
54 Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31: 1803792
55 Okuno J, Kunihiro T, Konishi K, et al. High-endurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application [A]. 2021 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2021: 1
56 Yoo Y W, Jeon W, Lee W, et al. Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes [J]. ACS Appl. Mater. Interfaces, 2014, 6: 22474
57 Alcala R, Materano M, Lomenzo P D, et al. BEOL integrated ferroelectric HfO2-based capacitors for FeRAM: Extrapolation of reliability performance to use conditions [J]. IEEE J. Electron Devices Soc., 2022, 10: 907
58 Hur J, Luo Y C, Tasneem N, et al. Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process [J]. IEEE Trans. Electron Devices, 2021, 68: 3176
59 Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines [J]. J. Chem. Phys., 1953, 21: 1087
60 Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
61 Rahman A. Correlations in the motion of atoms in liquid argon [J]. Phys. Rev., 1964, 136: A405
62 Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications [M]. New York: Academic Press, 2001: 63
63 Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
64 Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
65 Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
66 Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
67 Shin Y H, Grinberg I, Chen I W, et al. Nucleation and growth mechanism of ferroelectric domain-wall motion [J]. Nature, 2007, 449: 881
68 Brown I D, Shannon R D. Empirical bond-strength-bond-length curves for oxides [J]. Acta Cryst., 1973, 29A: 266
69 Brown I D, Wu K K. Empirical parameters for calculating cation-oxygen bond valences [J]. Acta Cryst., 1976, 32B: 1957
70 Liu S, Grinberg I, Rappe A M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations [J]. J. Phys., 2013, 25: 102202
71 Liu S, Grinberg I, Takenaka H, et al. Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3 [J]. Phys. Rev., 2013, 88B: 104102
72 Liu S, Grinberg I, Rappe A M. Intrinsic ferroelectric switching from first principles [J]. Nature, 2016, 534: 360
73 Shan T R, Devine B D, Kemper T W, et al. Charge-optimized many-body potential for the hafnium/hafnium oxide system [J]. Phys. Rev., 2010, 81B: 125328
74 Broglia G, Ori G, Larcher L, et al. Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 065006
75 Schie M, Müller M P, Salinga M, et al. Ion migration in crystalline and amorphous HfO x [J]. J. Chem. Phys., 2017, 146: 094508
76 Sivaraman G, Krishnamoorthy A N, Baur M, et al. Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide [J]. npj Comput. Mater., 2020, 6: 104
77 Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature, 1992, 358: 136
78 Phillpot S R, Sinnott S B, Asthagiri A. Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities [J]. Annu. Rev. Mater. Res., 2007, 37: 239
79 Smith J S, Isayev O, Roitberg A E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost [J]. Chem. Sci., 2017, 8: 3192
doi: 10.1039/c6sc05720a pmid: 28507695
80 Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface [J]. J. Chem. Phys., 2008, 129: 224104
81 Bartók A P, Gillan M J, Manby F R, et al. Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J]. Phys. Rev., 2013, 88B: 054104
82 Morawietz T, Singraber A, Dellago C, et al. How van der Waals interactions determine the unique properties of water [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 8368
doi: 10.1073/pnas.1602375113 pmid: 27402761
83 Ko H Y, Zhang L F, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics [J]. Mol. Phys., 2019, 117: 3269
84 Eshet H, Khaliullin R Z, Kühne T D, et al. Ab initio quality neural-network potential for sodium [J]. Phys. Rev., 2010, 81B: 184107
85 Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
86 Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
87 Andolina C M, Williamson P, Saidi W A. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy [J]. J. Chem. Phys., 2020, 152: 154701
88 Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
89 Jiang W R, Zhang Y Z, Zhang L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chin. Phys., 2021, 30B: 050706
90 Sanville E, Bholoa A, Smith R, et al. Silicon potentials investigated using density functional theory fitted neural networks [J]. J. Phys., 2008, 20: 285219
91 Behler J, Martoňák R, Donadio D, et al. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations [J]. Phys. Status Solidi, 2008, 245B: 2618
92 Babaei H, Guo R Q, Hashemi A, et al. Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies [J]. Phys. Rev. Mater., 2019, 3: 074603
93 Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
94 Sosso G C, Miceli G, Caravati S, et al. Neural network interatomic potential for the phase change material GeTe [J]. Phys. Rev., 2012, 85B: 174103
95 Thomas J C, Bechtel J S, Natarajan A R, et al. Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3 [J]. Phys. Rev., 2019, 100B: 134101
96 Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
97 Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
98 Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
99 Zeng J Z, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z pmid: 33177517
100 Andrade M F C, Ko H Y, Zhang L F, et al. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J]. Chem. Sci., 2020, 11: 2335
101 Dai F Z, Wen B, Sun Y J, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0 .2Hf0 .2Ti0 .2Nb0 .2-Ta0 .2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43: 168
102 Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys, 2022, 156: 124107
103 Wu J, Zhang Y Z, Zhang L F, et al. Deep learning of accurate force field of ferroelectric HfO2 [J]. Phys. Rev., 2021, 103B: 024108
104 Lyakhov A O, Oganov A R, Stokes H T, et al. New developments in evolutionary structure prediction algorithm USPEX [J]. Comput. Phys. Commun., 2013, 184: 1172
105 Wu J, Yang J Y, Ma L Y, et al. Modular development of deep potential for complex solid solutions [J]. Phys. Rev., 2023, 107B: 144102
106 Zhang D, Bi H R, Dai F Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
107 Wu J, Yang J Y, Liu Y J S, et al. Universal interatomic potential for perovskite oxides [J]. Phys. Rev., 2023, 108B: L180104
108 Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 427: 423
109 Popović Z S, Satpathy S, Martin R M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface [J]. Phys. Rev. Lett., 2008, 101: 256801
110 Santander-Syro A F, Copie O, Kondo T, et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 [J]. Nature, 2011, 469: 189
111 Caviglia A D, Gabay M, Gariglio S, et al. Tunable Rashba spin-orbit interaction at oxide interfaces [J]. Phys. Rev. Lett., 2010, 104: 126803
112 Ben Shalom M, Sachs M, Rakhmilevitch D, et al. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study [J]. Phys. Rev. Lett., 2010, 104: 126802
113 Zhong Z C, Tóth A, Held K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces [J]. Phys. Rev., 2013, 87B: 161102
114 Ge J F, Liu Z L, Liu C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 [J]. Nat. Mater., 2014, 14: 285
115 Xu R J, Huang J W, Barnard E S, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes [J]. Nat. Commun., 2020, 11: 3141
116 He R, Wu H Y, Zhang L F, et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics [J]. Phys. Rev., 2022, 105B: 064104
117 He R, Xu H W, Yang P J, et al. Ferroelastic twin-wall-mediated ferroelectriclike behavior and bulk photovoltaic effect in SrTiO3 [J]. Phys. Rev. Lett., 2024, 132: 176801
118 Scott J F, Salje E K H, Carpenter M A. Domain wall damping and elastic softening in SrTiO3: Evidence for polar twin walls [J]. Phys. Rev. Lett., 2012, 109: 187601
119 Salje E K H, Aktas O, Carpenter M A, et al. Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO3 [J]. Phys. Rev. Lett., 2013, 111: 247603
120 Frenkel Y, Haham N, Shperber Y, et al. Imaging and tuning polarity at SrTiO3 domain walls [J]. Nat. Mater., 2017, 16: 1203
121 Sulzbach M C, Tan H, Estandía S, et al. Polarization and resistive switching in epitaxial 2 nm Hf0 .5Zr0 .5O2 tunnel junctions [J]. ACS Appl. Electron. Mater., 2021, 3: 3657
122 Traore B, Blaise P, Vianello E, et al. On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying [J]. IEEE Trans. Electron. Devices, 2015, 62: 4029
123 Nukala P, Ahmadi M, Wei Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices [J]. Science, 2021, 372: 630
doi: 10.1126/science.abf3789 pmid: 33858991
124 Song T F, Bachelet R, Saint-Girons G, et al. Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films [J]. ACS Appl. Electron. Mater., 2020, 2: 3221
125 Choe D H, Kim S, Moon T, et al. Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls [J]. Mater. Today, 2021, 50: 8
126 Wei W, Zhao G Q, Zhan X P, et al. Switching pathway-dependent strain-effects on the ferroelectric properties and structural deformations in orthorhombic HfO2 [J]. J. Appl. Phys., 2022, 131: 154101
127 Ma L Y, Liu S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2 [J]. Phys. Rev. Lett., 2023, 130: 096801
128 Ma L Y, Wu J, Zhu T Y, et al. Ultrahigh oxygen ion mobility in ferroelectric hafnia [J]. Phys. Rev. Lett., 2023, 131: 256801
129 Ku B, Jeon Y R, Choi M, et al. Effects of post cooling on the remnant polarization and coercive field characteristics of atomic layer deposited Al-doped HfO2 thin films [J]. Appl. Surf. Sci., 2022, 601: 154039
130 Kim M K, Kim I J, Lee J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory [J]. Sci. Adv., 2021, 7: eabe1341
[1] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[2] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[3] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[4] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[5] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[6] 王冠杰, 刘盛咸, 周健, 孙志梅. 材料研究中的可解释机器学习[J]. 金属学报, 2024, 60(10): 1345-1361.
[7] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[8] 文通其, 刘怀忆, 龚小国, 叶贝琳, 刘思宇, 李卓远. 深度势能方法在材料科学中的应用[J]. 金属学报, 2024, 60(10): 1299-1311.
[9] 赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
[10] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[11] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[12] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[13] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[14] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[15] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.