|
|
机器学习势在铁电材料研究中的应用 |
刘仕1( ), 黄佳玮2, 武静1 |
1 西湖大学 理学院 物理系 杭州 310030 2 香港大学 机械工程系 香港 999077 |
|
Application of Machine Learning Force Fields for Modeling Ferroelectric Materials |
LIU Shi1( ), HUANG Jiawei2, WU Jing1 |
1 Department of Physics, School of Science, Westlake University, Hangzhou 310030, China 2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China |
引用本文:
刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
Shi LIU,
Jiawei HUANG,
Jing WU.
Application of Machine Learning Force Fields for Modeling Ferroelectric Materials[J]. Acta Metall Sin, 2024, 60(10): 1312-1328.
1 |
Ielmini D, Wong H S P. In-memory computing with resistive switching devices [J]. Nat. Electron., 2018, 1: 333
|
2 |
Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics [J]. Nat. Electron., 2018, 1: 442
|
3 |
Aggarwal S, Dhote A M, Li H, et al. Conducting barriers for vertical integration of ferroelectric capacitors on Si [J]. Appl. Phys. Lett., 1999, 74: 230
|
4 |
Slack J R, Burfoot J C. Flash evaporation of ferroelectric thin films [J]. Thin Solid Films, 1970, 6: 233
|
5 |
Mcadams H P, Acklin R, Blake T, et al. A 64-mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process [J]. IEEE J. Solid-State Circuits, 2004, 39: 667
|
6 |
Batra I P, Wurfel P, Silverman B D. Phase transition, stability, and depolarization field in ferroelectric thin films [J]. Phys. Rev., 1973, 8B: 3257
|
7 |
Wurfel P, Batra I P. Depolarization-field-induced instability in thin ferroelectric films—Experiment and theory [J]. Phys. Rev., 1973, 8B: 5126
|
8 |
Schenk T, Schroeder U, Pešić M, et al. Electric field cycling behavior of ferroelectric hafnium oxide [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19744
|
9 |
Megaw H D. Crystal structure of barium titanate [J]. Nature, 1945, 155: 484
|
10 |
Miyake S, Ueda R. On polymorphic change of BaTiO3 [J]. J. Phys. Soc. Jpn., 1946, 1: 32
|
11 |
von Hippel A, Breckenridge R G, Chesley F G, et al. High dielectric constant ceramics [J]. Ind. Eng. Chem., 1946, 38: 1097
|
12 |
Shirane G, Hoshino S. On the phase transition in lead titanate [J]. J. Phys. Soc. Jpn., 1951, 6: 265
|
13 |
Shirane G, Suzuki K, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study [J]. J. Phys. Soc. Jpn., 1952, 7: 12
|
14 |
Moreau J M, Michel C, Gerson R, et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study [J]. J. Phys. Chem. Solids, 1971, 32: 1315
|
15 |
Jonker G H, van Santen J H. Properties of barium titanate in connection with its crystal structure [J]. Science, 1949, 109: 632
pmid: 17792404
|
16 |
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss [J]. Science, 2020, 369: 1615
doi: 10.1126/science.abb7167
pmid: 32973026
|
17 |
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592: 381
|
18 |
Min H, Lee D Y, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598: 444
|
19 |
Liu Z, Qiu W D, Peng X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33: 2103268
|
20 |
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photon., 2018, 12: 681
|
21 |
Kim J S, Heo J M, Park G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611: 688
|
22 |
Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nat. Commun., 2014, 5: 5404
doi: 10.1038/ncomms6404
pmid: 25410021
|
23 |
Deumel S, van Breemen A, Gelinck G, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites [J]. Nat. Electron., 2021, 4: 681
|
24 |
Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585: 53
|
25 |
Park Y, Kim S H, Lee D, et al. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory [J]. Nat. Commun., 2021, 12: 3527
doi: 10.1038/s41467-021-23871-w
pmid: 34112776
|
26 |
Choi J, Han J S, Hong K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses [J]. Adv. Mater., 2018, 30: 1704002
|
27 |
Fu R J, Zhao W Y, Wang L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light [J]. Angew. Chem. Int. Ed., 2021, 60: 10082
doi: 10.1002/anie.202015395
pmid: 33759324
|
28 |
Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2 [J]. Nat. Rev. Mater., 2022, 7: 653
|
29 |
Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films [J]. Appl. Phys. Lett., 2011, 99: 102903
|
30 |
Park M H, Lee Y H, Mikolajick T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides [J]. Adv. Elect. Mater., 2019, 5: 1800522
|
31 |
Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide [J]. Jpn. J. Appl. Phys., 2014, 53: 08LE02
|
32 |
Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2 [J]. J. Mater. Chem., 2017, 5C: 333
|
33 |
Park M H, Schenk T, Fancher C M, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants [J]. J. Mater. Chem., 2017, 5C: 4677
|
34 |
Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films [J]. J. Appl. Phys., 2017, 122: 124104
|
35 |
Batra R, Huan T D, Rossetti G A, et al. Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration [J]. Chem. Mater., 2017, 29: 9102
|
36 |
Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1 - x Zr x O2: A computational investigation and a surface energy model [J]. J. Appl. Phys., 2015, 117: 134109
|
37 |
Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films [J]. Adv. Mater., 2015, 27: 1811
|
38 |
Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide [J]. Appl. Phys. Lett., 2015, 106: 232905
|
39 |
Batra R, Tran H D, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects [J]. Appl. Phys. Lett., 2016, 108: 172902
|
40 |
Künneth C, Materlik R, Kersch A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1 - x Zr x O2 grains [J]. J. Appl. Phys., 2017, 121: 205304
|
41 |
Park M H, Lee Y H, Kim H J, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment [J]. Nanoscale, 2017, 9: 9973
doi: 10.1039/c7nr02121f
pmid: 28681890
|
42 |
Xu L, Nishimura T, Shibayama S, et al. Ferroelectric phase stabilization of HfO2 by nitrogen doping [J]. Appl. Phys. Express, 2016, 9: 091501
|
43 |
Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide [J]. Appl. Phys. Lett., 2017, 110: 022903
|
44 |
Luo Q, Cheng Y, Yang J G, et al. A highly CMOS compatible hafnia-based ferroelectric diode [J]. Nat. Commun., 2020, 11: 1391
doi: 10.1038/s41467-020-15159-2
pmid: 32170177
|
45 |
Bouaziz J, Rojo Romeo P, Baboux N, et al. Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge? [J]. Appl. Phys. Lett., 2021, 118: 082901
|
46 |
Wu J X, Mo F, Saraya T, et al. Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application [J]. IEEE Trans. Electron Devices, 2021, 68: 6617
|
47 |
Beyer S, Dünkel S, Trentzsch M, et al. FEFET: A versatile CMOS compatible device with game-changing potential [A]. 2020 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2020: 17
|
48 |
Huan T D, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia [J]. Phys. Rev., 2014, 90B: 064111
|
49 |
Sang X H, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films [J]. Appl. Phys. Lett., 2015, 106: 162905
|
50 |
Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance [A]. 2020 IEEE International Electron Devices Meeting (IEDM) [C]. Francisco: IEEE, 2020: 12
|
51 |
Ali T, Polakowski P, Riedel S, et al. High endurance ferroelectric hafnium oxide-based FEFET memory without retention penalty [J]. IEEE Trans. Electron Devices, 2018, 65: 3769
|
52 |
Xiao W W, Liu C, Peng Y, et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FEFETs with ZrO2 seed layers characterized by fast voltage pulse measurements [J]. Nanoscale Res. Lett., 2019, 14: 254
|
53 |
Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon [J]. Naure, 2020, 580: 478
|
54 |
Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31: 1803792
|
55 |
Okuno J, Kunihiro T, Konishi K, et al. High-endurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application [A]. 2021 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2021: 1
|
56 |
Yoo Y W, Jeon W, Lee W, et al. Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes [J]. ACS Appl. Mater. Interfaces, 2014, 6: 22474
|
57 |
Alcala R, Materano M, Lomenzo P D, et al. BEOL integrated ferroelectric HfO2-based capacitors for FeRAM: Extrapolation of reliability performance to use conditions [J]. IEEE J. Electron Devices Soc., 2022, 10: 907
|
58 |
Hur J, Luo Y C, Tasneem N, et al. Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process [J]. IEEE Trans. Electron Devices, 2021, 68: 3176
|
59 |
Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines [J]. J. Chem. Phys., 1953, 21: 1087
|
60 |
Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
|
61 |
Rahman A. Correlations in the motion of atoms in liquid argon [J]. Phys. Rev., 1964, 136: A405
|
62 |
Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications [M]. New York: Academic Press, 2001: 63
|
63 |
Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
|
64 |
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
|
65 |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
|
66 |
Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
|
67 |
Shin Y H, Grinberg I, Chen I W, et al. Nucleation and growth mechanism of ferroelectric domain-wall motion [J]. Nature, 2007, 449: 881
|
68 |
Brown I D, Shannon R D. Empirical bond-strength-bond-length curves for oxides [J]. Acta Cryst., 1973, 29A: 266
|
69 |
Brown I D, Wu K K. Empirical parameters for calculating cation-oxygen bond valences [J]. Acta Cryst., 1976, 32B: 1957
|
70 |
Liu S, Grinberg I, Rappe A M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations [J]. J. Phys., 2013, 25: 102202
|
71 |
Liu S, Grinberg I, Takenaka H, et al. Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3 [J]. Phys. Rev., 2013, 88B: 104102
|
72 |
Liu S, Grinberg I, Rappe A M. Intrinsic ferroelectric switching from first principles [J]. Nature, 2016, 534: 360
|
73 |
Shan T R, Devine B D, Kemper T W, et al. Charge-optimized many-body potential for the hafnium/hafnium oxide system [J]. Phys. Rev., 2010, 81B: 125328
|
74 |
Broglia G, Ori G, Larcher L, et al. Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 065006
|
75 |
Schie M, Müller M P, Salinga M, et al. Ion migration in crystalline and amorphous HfO x [J]. J. Chem. Phys., 2017, 146: 094508
|
76 |
Sivaraman G, Krishnamoorthy A N, Baur M, et al. Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide [J]. npj Comput. Mater., 2020, 6: 104
|
77 |
Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature, 1992, 358: 136
|
78 |
Phillpot S R, Sinnott S B, Asthagiri A. Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities [J]. Annu. Rev. Mater. Res., 2007, 37: 239
|
79 |
Smith J S, Isayev O, Roitberg A E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost [J]. Chem. Sci., 2017, 8: 3192
doi: 10.1039/c6sc05720a
pmid: 28507695
|
80 |
Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface [J]. J. Chem. Phys., 2008, 129: 224104
|
81 |
Bartók A P, Gillan M J, Manby F R, et al. Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J]. Phys. Rev., 2013, 88B: 054104
|
82 |
Morawietz T, Singraber A, Dellago C, et al. How van der Waals interactions determine the unique properties of water [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 8368
doi: 10.1073/pnas.1602375113
pmid: 27402761
|
83 |
Ko H Y, Zhang L F, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics [J]. Mol. Phys., 2019, 117: 3269
|
84 |
Eshet H, Khaliullin R Z, Kühne T D, et al. Ab initio quality neural-network potential for sodium [J]. Phys. Rev., 2010, 81B: 184107
|
85 |
Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
|
86 |
Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
|
87 |
Andolina C M, Williamson P, Saidi W A. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy [J]. J. Chem. Phys., 2020, 152: 154701
|
88 |
Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
|
89 |
Jiang W R, Zhang Y Z, Zhang L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chin. Phys., 2021, 30B: 050706
|
90 |
Sanville E, Bholoa A, Smith R, et al. Silicon potentials investigated using density functional theory fitted neural networks [J]. J. Phys., 2008, 20: 285219
|
91 |
Behler J, Martoňák R, Donadio D, et al. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations [J]. Phys. Status Solidi, 2008, 245B: 2618
|
92 |
Babaei H, Guo R Q, Hashemi A, et al. Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies [J]. Phys. Rev. Mater., 2019, 3: 074603
|
93 |
Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
|
94 |
Sosso G C, Miceli G, Caravati S, et al. Neural network interatomic potential for the phase change material GeTe [J]. Phys. Rev., 2012, 85B: 174103
|
95 |
Thomas J C, Bechtel J S, Natarajan A R, et al. Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3 [J]. Phys. Rev., 2019, 100B: 134101
|
96 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
97 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
98 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
99 |
Zeng J Z, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z
pmid: 33177517
|
100 |
Andrade M F C, Ko H Y, Zhang L F, et al. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J]. Chem. Sci., 2020, 11: 2335
|
101 |
Dai F Z, Wen B, Sun Y J, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0 .2Hf0 .2Ti0 .2Nb0 .2-Ta0 .2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43: 168
|
102 |
Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys, 2022, 156: 124107
|
103 |
Wu J, Zhang Y Z, Zhang L F, et al. Deep learning of accurate force field of ferroelectric HfO2 [J]. Phys. Rev., 2021, 103B: 024108
|
104 |
Lyakhov A O, Oganov A R, Stokes H T, et al. New developments in evolutionary structure prediction algorithm USPEX [J]. Comput. Phys. Commun., 2013, 184: 1172
|
105 |
Wu J, Yang J Y, Ma L Y, et al. Modular development of deep potential for complex solid solutions [J]. Phys. Rev., 2023, 107B: 144102
|
106 |
Zhang D, Bi H R, Dai F Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
|
107 |
Wu J, Yang J Y, Liu Y J S, et al. Universal interatomic potential for perovskite oxides [J]. Phys. Rev., 2023, 108B: L180104
|
108 |
Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 427: 423
|
109 |
Popović Z S, Satpathy S, Martin R M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface [J]. Phys. Rev. Lett., 2008, 101: 256801
|
110 |
Santander-Syro A F, Copie O, Kondo T, et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 [J]. Nature, 2011, 469: 189
|
111 |
Caviglia A D, Gabay M, Gariglio S, et al. Tunable Rashba spin-orbit interaction at oxide interfaces [J]. Phys. Rev. Lett., 2010, 104: 126803
|
112 |
Ben Shalom M, Sachs M, Rakhmilevitch D, et al. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study [J]. Phys. Rev. Lett., 2010, 104: 126802
|
113 |
Zhong Z C, Tóth A, Held K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces [J]. Phys. Rev., 2013, 87B: 161102
|
114 |
Ge J F, Liu Z L, Liu C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 [J]. Nat. Mater., 2014, 14: 285
|
115 |
Xu R J, Huang J W, Barnard E S, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes [J]. Nat. Commun., 2020, 11: 3141
|
116 |
He R, Wu H Y, Zhang L F, et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics [J]. Phys. Rev., 2022, 105B: 064104
|
117 |
He R, Xu H W, Yang P J, et al. Ferroelastic twin-wall-mediated ferroelectriclike behavior and bulk photovoltaic effect in SrTiO3 [J]. Phys. Rev. Lett., 2024, 132: 176801
|
118 |
Scott J F, Salje E K H, Carpenter M A. Domain wall damping and elastic softening in SrTiO3: Evidence for polar twin walls [J]. Phys. Rev. Lett., 2012, 109: 187601
|
119 |
Salje E K H, Aktas O, Carpenter M A, et al. Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO3 [J]. Phys. Rev. Lett., 2013, 111: 247603
|
120 |
Frenkel Y, Haham N, Shperber Y, et al. Imaging and tuning polarity at SrTiO3 domain walls [J]. Nat. Mater., 2017, 16: 1203
|
121 |
Sulzbach M C, Tan H, Estandía S, et al. Polarization and resistive switching in epitaxial 2 nm Hf0 .5Zr0 .5O2 tunnel junctions [J]. ACS Appl. Electron. Mater., 2021, 3: 3657
|
122 |
Traore B, Blaise P, Vianello E, et al. On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying [J]. IEEE Trans. Electron. Devices, 2015, 62: 4029
|
123 |
Nukala P, Ahmadi M, Wei Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices [J]. Science, 2021, 372: 630
doi: 10.1126/science.abf3789
pmid: 33858991
|
124 |
Song T F, Bachelet R, Saint-Girons G, et al. Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films [J]. ACS Appl. Electron. Mater., 2020, 2: 3221
|
125 |
Choe D H, Kim S, Moon T, et al. Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls [J]. Mater. Today, 2021, 50: 8
|
126 |
Wei W, Zhao G Q, Zhan X P, et al. Switching pathway-dependent strain-effects on the ferroelectric properties and structural deformations in orthorhombic HfO2 [J]. J. Appl. Phys., 2022, 131: 154101
|
127 |
Ma L Y, Liu S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2 [J]. Phys. Rev. Lett., 2023, 130: 096801
|
128 |
Ma L Y, Wu J, Zhu T Y, et al. Ultrahigh oxygen ion mobility in ferroelectric hafnia [J]. Phys. Rev. Lett., 2023, 131: 256801
|
129 |
Ku B, Jeon Y R, Choi M, et al. Effects of post cooling on the remnant polarization and coercive field characteristics of atomic layer deposited Al-doped HfO2 thin films [J]. Appl. Surf. Sci., 2022, 601: 154039
|
130 |
Kim M K, Kim I J, Lee J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory [J]. Sci. Adv., 2021, 7: eabe1341
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|