金属学报, 2024, 60(10): 1312-1328 DOI: 10.11900/0412.1961.2024.00177

综述

机器学习势在铁电材料研究中的应用

刘仕,1, 黄佳玮2, 武静1

1 西湖大学 理学院 物理系 杭州 310030

2 香港大学 机械工程系 香港 999077

Application of Machine Learning Force Fields for Modeling Ferroelectric Materials

LIU Shi,1, HUANG Jiawei2, WU Jing1

1 Department of Physics, School of Science, Westlake University, Hangzhou 310030, China

2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China

通讯作者: 刘 仕,liushi@westlake.edu.cn,主要从事多尺度铁电材料模拟研究

第一联系人: 黄佳玮(共同第一作者),男,1996年生,博士

收稿日期: 2024-05-23   修回日期: 2024-07-18  

基金资助: 国家自然科学基金项目(92370104)

Corresponding authors: LIU Shi, professor, Tel:(0571)85273989, E-mail:liushi@westlake.edu.cn

Received: 2024-05-23   Revised: 2024-07-18  

Fund supported: National Natural Science Foundation of China(92370104)

作者简介 About authors

刘 仕,男,1988年生,教授,博士

摘要

铁电材料作为一类具有自发极化且极化外场可控的功能材料,在非易失信息存储方面有着广阔的应用前景,同时也面临着许多挑战。铁电材料的性能与在外场作用下极化的动力学行为密切相关,在观测精度受限的实验条件下,高精度的原子级材料模拟手段显得尤为重要。分子动力学为在较大的空间和时间尺度上研究材料动力学过程提供了理想的手段,然而受制于传统力场精度差、开发难度高、可移植性差等问题,基于经典力场的分子动力学模拟在新材料上的应用受到了较大的阻碍。机器学习方法的发展为力场开发带来了新的思路。在众多机器学习势中,深度势能(DP)是一种基于深度神经网络的势能模型,具备与密度泛函理论(DFT)相媲美的精度,同时还拥有接近传统经典力场的高效计算性能。本文主要介绍了DP在铁电材料中的开发与应用,通过DP模拟,在原子尺度深入探究铁电材料中的相变机制和极化反转过程。主要工作包括重要铁电材料HfO2、经典钙钛矿铁电材料的深度势开发和测评,基于深度势能分子动力学揭示铁电HfO2中超高O2-迁移率的微观机制,以及SrTiO3极性畴界诱导的挠曲铁电和体光伏效应。

关键词: 铁电材料; 分子动力学; 机器学习; 深度势能

Abstract

Ferroelectric materials, which are characterized by tunable spontaneous polarization, show remarkable application potential for nonvolatile information storage; however they present various challenges. The performance of these materials is strongly influenced by their dynamic polarization behavior under multiple external fields. Due to the limited precision of experimental observations, precise atomic-level material simulations are crucial. Although molecular dynamics (MD) offers an ideal method for investigating material dynamics over a wide spatiotemporal range, its application to new materials is often limited by challenges such as low accuracy, complex development, and limited portability of conventional classical force fields. Advances in machine learning have provided new possibilities for developing force fields. Among different machine learning potentials, deep potential (DP) based on deep neural networks stands out. DP offers accuracy comparable to that of density functional theory while providing computational efficiency similar to that of conventional classical force fields. This review primarily focused on the development and application of DP in ferroelectric materials, specifically examining the phase transition mechanisms and polarization reversal processes at the atomic scale. Considerable efforts have been made to develop and evaluate DP for crucial ferroelectric materials such as hafnium dioxide (HfO2) and classic perovskite ferroelectric materials. Furthermore, this review explores the high oxygen-ion migration kinetics in HfO2 using DP and investigates the flexoelectricity induced by polar domain boundaries and the bulk photovoltaic effects in strontium titanate. By highlighting the use of DP molecular dynamics approaches in ferroelectric materials, this review emphasizes the role of machine learning approaches in optimizing and accelerating material simulations to facilitate further breakthroughs and discoveries.

Keywords: ferroelectric material; molecular dynamics; machine learning; deep potential

PDF (3312KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328 DOI:10.11900/0412.1961.2024.00177

LIU Shi, HUANG Jiawei, WU Jing. Application of Machine Learning Force Fields for Modeling Ferroelectric Materials[J]. Acta Metallurgica Sinica, 2024, 60(10): 1312-1328 DOI:10.11900/0412.1961.2024.00177

随着物联网和人工智能等技术的迅速发展,需要存储和处理的数据将指数级增长,这对传统的von Neumann计算架构提出了巨大的挑战。在von Neumann架构中,内存和逻辑单元之间存在毫米到厘米量级的物理分离,这严重限制了它们在处理大量非结构化数据时的效率。频繁的数据传输不仅导致功耗显著增加,还会引发信号延迟问题,这一现象通常被称为“内存墙”。随着中央处理器(CPU)性能的持续提升,内存与处理器之间的速度鸿沟愈发扩大,这进一步制约了系统的整体吞吐量,并抑制了计算速度和能源利用效率的提升[1,2]。此外,内存(纳秒级)和存储器(微秒级)之间的操作速度差距也加剧了延迟和能耗问题。

为了解决信息处理与存储技术面临的挑战,迫切需要实现高速、低功耗、高可靠性、大容量且能与互补金属氧化物半导体(complementary-metal-oxide-semiconductor,CMOS)处理技术兼容的内存和存储设备。尽管目前还没有一种新兴的存储解决方案能够完全满足所有这些要求,但过去几十年的研究已经让新型存储材料日益凸显其巨大的商业潜力。其中,基于铁电材料的器件已经成为内存和计算器件的有力竞争者。铁电材料以其独有的外场可控自发极化的特性,成为了备受关注的非易失性存储材料之一。与其他非易失存储技术(如相变存储、阻变存储和磁性随机存储)相比,基于铁电材料的存储器件具有功耗低、读写速度快的优点[3~5]。尽管铁电存储在20世纪90年代初步实现了商业化应用,但由于铁电薄膜的退极化[6,7]、CMOS兼容性差等问题未能彻底解决,铁电存储技术的发展受到了极大的制约[8]。因此,深入了解铁电材料在纳米尺度的微观动态行为、精准预测铁电材料动力学特性,在上述问题的背景下显得至关重要。

然而,实验上受限于铁电材料在应用中的超薄厚度、较弱的反转电流和观测手段的精度,研究人员难以实时观测铁电材料的微观动力学行为,这使得材料模拟计算显得尤为重要。理论上来说,原子尺度下的模拟研究可以帮助研究人员深刻了解铁电薄膜极化反转的机理和特性,理清动力学构性关系,为优化铁电材料的性能提供理论指导。然而铁电极化反转过程往往涉及较大的空间和时间尺度,基于密度泛函理论(density functional theory,DFT)的计算方法具有量子力学级别的精度,但受限于其巨大的计算开销,DFT计算方法难以在更大尺度模拟铁电材料的动力学行为。相较于DFT计算,基于Newton力学的分子动力学(molecular dynamics,MD)计算效率高,是研究功能材料动力学性能的有效手段,但其准确度取决于描述原子间相互作用的经典势场(又称力场)的精度。传统力场开发又面临着精度差、耗时久、人为干预多、不确定性大、可移植性差等问题。因此,理论上需要合适的计算物理方法,在兼顾精度和效率的同时,实现百万原子-纳秒尺度模拟铁电薄膜体系。

在这一背景下,可以利用DFT计算获得的高精度数据,结合基于深度神经网络的深度势能(deep potential,DP)方法,来开发适用于典型铁电材料的经典势场,从而有效解决微尺度模拟所面临的精度和效率问题。以2种重要的铁电材料——钙钛矿型氧化物和HfO2为例,本文介绍了DP方法在快速开发经典力场中的应用,并阐述其在描述铁电材料的结构、相变以及动力学行为方面的优势;探讨了如何利用DP方法,结合第一性原理计算和MD模拟,在实际材料中加以应用,如揭示铁电材料HfO2薄膜中带电氧空位对铁电稳定性的影响,以及铁电性与O2-长程输运之间的关联;最后,展望了人工智能在铁电材料研究中的未来发展方向,并提出未来研究的挑战与展望。

1 铁电材料介绍

1945年,研究人员发现钙钛矿(perovskite)结构的BaTiO3在室温下具有稳定的铁电性[9~11],打开了钙钛矿型铁电材料研究的大门。随后包括PbTiO3[12]、Pb(Zr, Ti)O3[13] 、BiFeO3[14]在内的多种钙钛矿型铁电材料被发现,在各个领域中得到了广泛的应用。钙钛矿型铁电材料的晶体结构如图1a所示,由于其自发的对称性破缺,导致正负电荷中心不重合,从而产生电偶极矩,从宏观上看,晶体显示出自发极化[15]。铁电材料所展现出的多种优异物性(压电性、热释电性、非线性光学响应、铁电光伏响应、多铁性等)使其成为了一类重要的新型功能材料,应用领域包括太阳能电池[16~18]、发光二极管(LED)[19~21]、光电探测器[22,23]、激光器[24]、忆阻器[25]、人工突触器件[26]、压力诱导发光[27]等。随着理论研究方法与实验合成技术的不断提高,越来越多的新型铁电材料被预测和合成,极大地拓展了其应用前景。

图1

图1   以PbTiO3为代表的钙钛矿铁电材料结构示意图和铁电相HfO2结构示意图

Fig.1   Schematic structures of perovskite ferroelectric material represented by PbTiO3 (Polarization (denote as P) directions are marked with blue arrows. Pb atoms in dark gray, Ti atoms in blue, and O atoms in red) (a) and ferroelectric phase HfO2 (Hf atoms in light gray and O atoms in red. Onp and Op are non-polar and polar O atoms, respectively) (b)


2011年,研究人员在具有萤石结构的Si掺杂的HfO2中观察到了铁电性[28,29],这一开创性的发现引起了广泛的关注。在此之前,HfO2作为栅极氧化物,自2007年以来已经被应用于45 nm CMOS节点,工业应用已经十分成熟。研究发现,通过后退火处理[30]、施加拉伸应力、掺杂[31~35]、表面界面[36~41]以及HfO2中O空位的存在[42,43],可以帮助稳定HfO2的正交铁电相,为随后展示CMOS工艺兼容的铁电存储器应用(如铁电场效应晶体管、铁电随机存取存储器、铁电隧道结和铁电二极管)奠定了基础[44~47]。值得注意的是,HfO2能形成多种晶相,包括正交、六方、四方、立方和单斜晶相。尽管关于HfO2中铁电性的起源仍存在一定的争议,但普遍认为具有Pca21空间群的正交相具有铁电性质[36,37,48,49]。如图1b所示,Pca21相的结构特点为:具有一个由四配位的非极性氧离子(Onp)的间隔层,将极性的三配位氧离子(Op)间隔开,这些极性和非极性O2-沿着垂直于极化方向交替排列。要稳定HfO2的铁电相,需要对其进行一系列的处理,包括高于400℃的后沉积退火处理、高压应力和/或控制O空位的百分比[50]

HfO2与CMOS工艺兼容,并且具有稳定的铁电性,在铁电存储应用中有着广阔的应用前景。例如,铁电HfO2的矫顽铁电场(EC)为1~1.5 MV/cm,这使得HfO2在厚度约10 nm时表现出0.5~2 V的大内存窗口,同时在室温下显示出长达105~106 s的良好数据完整性,并且在85、120和150℃的高温下可以实现10年的潜在数据保留[51,52]。此外,铁电HfO2的剩余极化为10~50 µC/cm2,稳定且适中的剩余极化对改善铁电随机存取存储器和铁电隧道结的器件性能是十分有利的。更重要的是,即使在小于10 nm的厚度下,HfO2也表现出了稳定的铁电性,解决了铁电材料困扰已久的尺寸效应问题[53,54]。此外,铁电HfO2具有相对较大的带隙,大小约为5.3 eV。HfO2的能带与Si的导带和价带之间有较大的带偏移,使得材料在10 nm厚度的漏电流得到极大的抑制。上述这些优势使得铪基铁电存储器应用的特征尺寸大幅缩小,解决了铁电存储微型化的问题[55]。矫顽场、剩余极化等铁电性能可以通过掺杂或施加压应力来控制,因此HfO2可以在各种存储器中得到应用。例如,Si、Al和La掺杂的铁电HfO2具有相对较高的激活温度(> 700℃),已经成功地被集成在前端CMOS工艺过程中[56],而Zr掺杂和未掺杂的铁电HfO2具有较低的激活温度(< 500℃),也已经成功地在后端CMOS工艺中得到应用[57,58]。尽管铁电HfO2表现出许多令人期待的特性,但由于其晶体结构的复杂性,从制备的角度来抑制稳定的单斜相并增强亚稳的铁电相的目标变得十分具有挑战性,因此铁电HfO2的可靠性是当前大规模集成电路应用的一个关键问题。

2 分子动力学模拟与深度势能方法

2.1 经典分子动力学

在经典MD模拟中,所有原子都被视为无结构的经典粒子,它们通过经典力场相互作用,并在Newton运动定律的指导下演化,从而能够有效地模拟一组原子的时间依赖行为[59~62]。MD通常能够模拟包含约106个原子的体系,模拟的时间尺度在10-12~10-9 s之间。MD模拟的独特之处在于它能够描述在复杂条件下体系的响应过程,如应变、温度和电场等。通过追踪原子的运动轨迹,更加深入地了解体系的动力学行为。显然,准确描述原子间势能的力场是运行MD模拟的先决条件。传统的力场开发是通过一组解析函数来近似原子间势能。在实践中,解析能量函数通常包括两体和多体项、长程和短程项以及静电和非静电项。一旦确定了能量函数的形式,就可以通过拟合来获取力场参数,使得MD模拟能够复现已知的参考数据。MD模拟中,力场的选取要根据研究体系来确定,例如对于惰性气体分子,可以选择Lennard-Jones势来描述分子间的相互作用[63],对于离子晶体可以采用核壳模型等基于Coulomb作用的势,对于共价体系和金属体系,可以选择嵌入原子势(EAM)[64]、修正嵌入原子势(MEAM)[65]、Tersoff[66]等多体势。然而,用有限数量的参数形式构建的能量函数能够忠实地表示原子间的“真实”势能是不可能的,因为力场在本质上是高维度的。因此,为铁电材料开发准确的力场通常是一个繁琐的过程,需要花费数月甚至数年的时间。

尽管经典力场的精度容易受到经验性参数的限制,但科研人员仍然从有限的模型中挖掘出了铁电材料动力学性质的重要发现。2007年,Shin等[67]基于键价模型(BVVS)[68~71]的MD模拟研究了无缺陷的PbTiO3中180°畴壁运动,结果表明,畴壁运动遵循Merz定律。随后Liu等[72]基于修改后的键价模型,研究了90° PbTiO3畴壁的温度和场依赖,结果表明畴壁在低场条件下表现出对温度敏感的蠕变行为,遵循Merz定律。在高场区域,温度的影响变得较弱,缺陷的存在对于内在的蠕变-解锚转变并非必要。相反,成核和生长机制对于这种转变十分重要。在低场下,成核过程是决定畴壁运动速率的关键步骤,且依赖于热激发。在高场下,核化能垒接近于零,使得畴壁运动变得对温度不敏感,其速率主要取决于场强度。此外,Liu 等[72]在PbTiO3中90°畴壁的MD模拟中获得了更详细的原子级图像,揭示了钻石形态的成核过程,其边界具有显著的扩散性,极化逐渐发生变化。

2.2 深度势能分子动力学

如前文提到,经典力场需要预设较低维度的数学函数来描述局域多体作用,以提高计算效率,因此只能对真实的高维度的相互作用势粗糙近似。为了提高模拟复杂体系的计算精度,通常只能通过不断人为增加势函数的复杂度(提高函数的维度)来进行调节,导致力场愈加复杂,局限性越来越大。例如在发现 HfO2 薄膜的铁电性质之前,它作为栅极介质材料以及在阻抗存储方面的潜在应用已经被研究了几十年。在这个时期,研究人员开发了几种HfO2的经典力场[73~76]。这些传统的力场使用一组解析函数来建模原子间的相互作用,参数通过与已知参考数据对齐来拟合。然而,这些力场都是在当时没有未知的铁电Pca21相的情况下开发的,因此这些势场在研究Pca21相HfO2铁电性质时的有效性是值得怀疑的。力场开发的本质是构建能量的函数,然后通过对计算模拟和实现观测结果进行拟合来实现参数化的过程。然而,由于体系的复杂性,没有任何一个力场可以确保其对应特定材料的准确性。此外,由于p-d轨道杂化作用,铁电材料中的过渡金属——O原子化学键通常具有混合离子共价特性[77],这进一步增加了力场开发的复杂性。使用更复杂的能量函数,例如反应性经验键序(REBO)势能,虽然可以提高传递性,但需要耗费大量时间且拟合过程繁琐[69,70,78]。所有这些困难极大地阻碍了力场的开发以及 MD 模拟的应用,因此对于新材料来说,力场的开发显得尤为困难。

人工智能(artificial intelligence,AI)为解决精度和效率之间的两难问题提供了至关重要的方案。通过结合第一性原理密度泛函理论计算和经典分子动力学的优势,机器学习(machine learning,ML)势被认为是兼具精度和效率的力场。目前,研究人员基于机器学习方法,已经开发了许多适用于具有不同特性体系的力场,包括有机分子[79,80]、分子H2O和固态H2O[81~83]、金属[84~86]和合金[87~89]、半导体如Si[90~93]和GeTe[94],以及无机卤化物钙钛矿[95]。机器学习势场的开发有2个关键要素:有关局部原子环境的描述符,以及将描述符映射到局域能量贡献的非线性拟合函数。2007年,Behler和 Parrinello[96]提出使用“原子中心对称函数”(atom centered symmetry function,ACSF)来描述原子的局域几何环境,然后将其用作人工神经网络的输入,以评估原子对总能量的贡献。Bartók等[97]使用原子位置平滑重叠函数(smooth overlap of atomic positions kernel,SOAP)为Si开发了一个 Gaussian 近似势。最近,DP使用能够保持对称性的嵌入网络来参数化描述符,避免了人为手动制作描述符[98]。DP势场已经被证明可以用于模拟化学反应中的复杂化学环境[99]、异质水界面[100]以及高熵合金[101]等多种体系的分子动力学。

图2[98]所示,在深度势能模型中,总能量(E)定义为用深度神经网络(deep neural network,DNN)参数化的原子能量(Ei )之和,Ei=Eωαi(Ri) (其中, Ri 是相对于其截断半径rc内原子i的近邻局部环境,αi 表示第i个原子的化学种类,ωαi是DNN参数集)。Ei 的每个子网络包括一个编码和一个拟合神经网络,前者将 Ri 映射到保持对称性的特征矩阵 Di,后者是一个标准的前馈神经网络。训练过程旨在最小化损失函数L(pϵ, pf, pξ),其定义为[98]

Lpϵ, pf, pξ=pϵΔϵ2+pf3NiΔFi+pξ9|Δξ|2

式中,N是原子数;ϵ是每个原子的能量;Fi 是第i个原子的原子力;ξ是Virial张量在每个原子上的分量;Δϵ、ΔFi 和Δξ分别表示DP模型相对DFT模型预测得到能量、受力和Virial的误差;pϵpξpf是可调的前置因子,分别用于控制训练中使用的能量、力和应力信息的权重,并可以在学习过程中进行更改。

图2

图2   深度势能(DP)模型原理示意图[98]

Fig.2   Schematic diagram of the deep potential (DP) energy model, amplified by a deep neural network [98] ( Ri is the global coordinates of the atom i, and Rij = Ri - Rj describes the neighboring atoms. Dij is the local coordinate information and serves as neural network input. Ei is the “atomic energy” of atom i, while E is the total energy of the whole system)


在传统的力场开发中,由于很难确定体系包含构型的完备性,构建适合拟合的数据库一直相当棘手。鉴于训练数据通常是通过昂贵的第一性原理计算获得的,优化训练数据的构建方法显得格外重要。深度势能生成器(DP-GEN)[86]是一种并行学习过程,可以有效地更新基于第一性原理的训练数据库(图3[86])。DP-GEN中的每个封闭循环包括3个步骤:探索、标记和训练。从数据库开始,使用不同的ωαi初始值训练一组DP模型。在接下来的探索步骤中,使用DP模型进行MD模拟以探索构型空间。对于每个从MD中新采样的构型,DP模型的一组预测(如能量和原子力)将生成一个预测的集合,其最大标准差作为标记的标准:导致模型偏差较大的采样构型被标记为DFT计算,并将被添加到下一个循环的训练数据库中。循环将重复,直到MD中的所有采样构型都由DP模型的集合很好地描述[102]。具体来说,DP-GEN设置了标准偏差范围,当结构能量/力偏差大于设定值的上限,认为这些结构在某种程度上可能不太合理,不做考虑;当偏差小于设定值的下限,当前模型已经对该类型的结构进行很好的描述,再继续添加这种构型也不会对模型的精度有所提升,因此也不做考虑。这一策略可以快速定位并选择那些偏差在设定范围内的结构进行标记,有效降低了构建训练数据集的成本。

图3

图3   深度势能生成器(DP-GEN)框架图[86]

Fig.3   Deep potential generator (DP-GEN) framework diagram[86]

(a) the exploration, labeling, and training steps in the iterative procedure; the deep potential molecular dynamics (DPMD)-based explora-tion strategy is used here as an example. The molecular dynamics simulation is driven by an ensemble of DP models given an initial structure, and a series of conforma-tions are sampled

(b) for each configuration, the maximum deviation from the atomic force, defined as the error metric ϵ, is predicted by the DP model ensemble. σhi and σlo are the upper and lower bounds of the trust levels, respectively. Fw,i (Rt) denotes the force on the atom with index i predicted by the model Eω, and Nm denotes the number of atoms

(c) labeling is performed, and first-principles cal-culations are employed to obtain the energies and forces of the candidate structures, E˜ and F˜ are energies and forces computed through first-principles calculations, respectively

(d) based on the accumulated training set, a new DP model ensemble is generated and passed to the next iteration


对于铁电材料而言,由于其天然自发的电偶极矩不可避免地在体系中引入了长程Coulomb相互作用,这种长程力在铁电材料的偶极-偶极相互作用中扮演着十分重要的角色。然而在绝大多数分子动力学势场中,由于截断半径较小,长程相互作用无法被很好的描述。为克服这一限制,Zhang等[102]提出了长程相互作用深度势能(deep potential long-range,DPLR)模型。该模型基于电子电荷中心的信息扩展了DP方法,这里电子电荷中心用Wannier中心(Wannier center)表示,同时Wannier中心的依赖环境由基于DNN模型的Deep Wannier (DW)方法描述。DPLR利用来自DW的信息,基于离子和Wannier中心点分别以球形Gaussian电荷分布为中心建模。实际应用中,DPLR方法在保持与DP以及DFT同级别精度的前提下,在H2O分子间相互作用和NaCl晶体声子描述上都有了更进一步的提升。该方法不仅弥补了标准深度势能模型的缺陷,还提高了模型的精度和预测能力。

3 铁电材料深度势场开发

3.1 HfO2 深度势

Wu等[103]利用深度势能分子动力学方法,通过同步学习DFT的计算结果,构建了一个精度高且迁移性好的HfO2力场,结果表明,DP模型能够准确地再现HfO2中多种晶相的热力学性质,并且模型对不同晶相之间相变能垒的预测与DFT计算结果吻合良好。利用DP模型进行等压等温(NPT)系综的分子动力学模拟,成功地模拟了HfO2的温度驱动铁电-顺电相变过程。图4[103]展示了DP模型对最终训练数据集中所有结构(21768个构型)的能量和原子力的计算结果,DP模型的预测与DFT计算值整体上达到了令人满意的一致性,能量的平均绝对误差(MAE)为1.6 meV/atom。此外,DP模型在预测HfO2的结构信息以及材料性能方面也表现出了出色的能力。与DFT计算结果相比,DP模型优化的HfO2不同相的晶格参数表现出了良好的一致性,绝大部分晶格常数的误差都不超过1%。此外,DP模型对训练集中涉及到的相的弹性常数和模量有着优异的预测能力,同时对原始训练数据集不包含的相的弹性性质或结构信息也能给出与DFT相匹配的结果,显示了该模型良好的准确性和可迁移性。

图4

图4   DP模型预测最终训练数据集中所有结构的能量和原子力与密度泛函理论(DFT)结果对比,及绝对误差分布[103]

Fig.4   DP model predictions of energies (a) and atomic forces along different directions (fx, fy, and fz ) (b-d) for all structures in the final training dataset vs density functional theory (DFT) results (Insets represent absolute error distributions)[103]


图5a[103]展示了使用DP模型预测和DFT计算的HfO2不同晶相的状态方程(equations of state,EOS)。DP模型很好地预测了DFT计算的状态方程以及不同晶相稳定性的顺序:E(P21/c) < E(Pbca) < E(Pca21) < E(P42/nmc) < E(Fm3¯m)。图5b[103]中展示的P21/cPbcaPca21相的声子谱进一步证明了DP模型预测力学性能的能力,DP模型预测的声子谱结果与DFT计算值之间存在非常好的一致性。此外,向训练数据集中添加用于计算声子谱的扰动结构可以进一步改善DP模型对声子谱的预测能力。在HfO2薄膜中,铁电相(空间群Pca21)的形成被认为是动力学过程诱导的,但要研究有限温度下的相变,力场需要准确地预测不同晶相之间的能垒。由于相变过程的中间结构相对平衡结构发生了强烈的畸变,对于力场的精度和扩展性有较高的要求。USPEX代码[104]中的变胞微动弹性带(variable cell nudged elastic band,VCNEB)方法可以确定连接HfO2不同相之间的最小能量路径(minimum energy paths,MEPs)。图5c[103]对比了DP预测和DFT计算MEPs中结构的能量,显示了2者之间的出色一致性,平均绝对误差为2.2 meV/atom。

图5

图5   HfO2不同晶相的状态方程[103],HfO2P21/c、PbcaPca21相的声子谱[103],HfO2多种晶相间能垒计算[103],压力为0 GPa时不同温度下O原子沿[010]方向的局域位移(d[010])的概率分布,以及温度升高驱动的晶格常数以及d[010]平均值的变化[103]

Fig.5   Equation of state for different crystalline phases of HfO2 (V is the volume of the cell. Solid lines and crosses mark the results of DFT calculations and DP model predictions, respectively)[103] (a), phonon spectra of HfO2P21/c, Pbca, and Pca21phases[103] (b), energy barrier calculations between multiple crystalline phases of HfO2 (Solid lines are DFT calculations, and hollow circles are DP predictions)[103] (c), probability distributions of the local displacement of oxygen atoms along the [010] direction (d[010]) at different temperatures for a pressure of 0 GPa (Inset shows the distribution of the displacements of oxygen atoms along the [100], [010], and [001] directions at 400 K) (d), and temperature increase-driven changes in the lattice constant and in the average value of d[010], indicating the occurrence of a phase transition (e)


该工作另一个重点是实现铁电HfO2的分子动力学相变模拟。基于一个6144个原子的超胞,通过DP模型的分子动力学模拟研究了以铁电相(Pca21)为初始结构的温度驱动相变。图5d显示了在0 GPa的压强下,沿Cartesian坐标轴的O原子局域位移概率分布与温度的相关性。随着温度的升高,O原子局域位移沿[100]和[001]方向的分布是对称的,而沿[010]方向的分布是不对称的,其中一个峰值位于零附近,另一个峰值位于0.06 nm左右。O原子偏移程度d[010]的平均值与温度的相关性清楚地揭示了从Pca21Pbca的相变,Pbca相的结构特点是相邻的极性O原子反平行排列。在5 GPa 的压强下,随着温度的升高,d[010]分布中的正峰向较低的值移动,表明总极化减小,发生相变。在高温顺电相(2400 K)中,d[010]变为单峰。从图5e中晶格常数和d[010]的平均值与温度的相关性可以看到,体系发生了从Pca21到非极性高温四方相P42/nmc的转变。

3.2 钙钛矿固溶体通用深度势

对于研究最为深入的ABO3型钙钛矿氧化物而言,其A位和B位的多样性为微调各种相互作用的能量尺度提供了平台,进而产生了丰富的新现象,如铁电性、铁磁性、多铁性和超导性等。Wu等[105]采用“模块化开发深度势”(modular development of deep potential,ModDP)的策略,系统地开发、扩展和改善了多组分固溶体的力场。ModDP的核心思想是将DP模型相关的训练数据集视为基本模块,这些模块可被重复利用,构建固溶体的初始训练数据集。然后,通过分子动力学模拟和Monte Carlo交换过程对其庞大的构型和化学空间进行采样,采用并同步学习程序DP-GEN自动、高效地迭代更新固溶体的训练数据集。如图6a[105]所示,ModDP策略可在没有人为干预的情况下直接开发复杂固溶体的DP模型,为建立模块化的力场数据集奠定了基础。进一步将ModDP策略应用于常见的ABO3类型的钙钛矿固溶体材料,结合具有注意力机制的神经网络模型DPA-1[106],获得了一个通用的力场,能够准确地描述包含14种不同金属元素的26种不同类型的钙钛矿型氧化物[107]

图6

图6   模块化开发深度势(ModDP) 策略示意图[105]和UniPero 流程示意图[107]

Fig.6   Schematic diagram of modular development of deep potential (ModDP) strategy (As an example, DP-GEN is used to obtain DP models for HfO2 and ZrO2, respectively, using Hf x Zr1 - x O2 (HZO). The initial training dataset consists of the converged datasets of HfO2 and ZrO2 with the random structures of Hf x Zr1 - x O2 (x = 0.25, 0.50, and 0.75), and the converged DP model of Hf x Zr1 - x O2 is finally obtained by DP-GEN. MD—molecular dynamics, MC—Monte Carlo) (a)[105] and schematic diagram of the UniPero process (The workflow for building a generic force field for chalcogenide oxides follows the strategy of ModDP) (b)[107]


基于ModDP策略,Wu等[107]设计了一个逐步增加复杂性的程序,旨在增强DPA-1模型对钙钛矿型氧化物的描述能力。力场开发程序的工作流程如图6b[107]所示,该方法旨在获得通用的钙钛矿型氧化物原子间力场。初始数据集包含约1000个结构,涵盖26种不同类型的钙钛矿氧化物,涉及约200个组分和14种金属元素。首先,使用标准的DP-GEN策略来收敛3种元素的钙钛矿氧化物的DPA-1模型。然后,将收敛的训练数据集作为DP-GEN的起点,以获得适用于4种元素钙钛矿体系的DPA-1模型,例如PbZr1 - x Ti x O3和Pb(Mg1/3Nb2/3)O3。最终得到一个能够描述包括Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (即PIN-PMN-PT)等三元固溶体在内的6种元素的钙钛矿型氧化物的DPA-1模型,该模型即为钙钛矿型铁电材料通用势场,命名为UniPero,能够描述多种钙钛矿型氧化物。

在确认模型能量和力准确收敛的前提下,DPA-1模型适用性可通过模拟钙钛矿型铁电材料的温度驱动相变来进行测试。如图7[107]所示,DPA-1模型在没有任何调整的情况下,成功地复现了铅基铁电体(如PbTiO3、Pb0.5Sr0.5TiO3和PbZr0.5Ti0.5O3)、无铅铁电体(如BaTiO3、KNbO3和K0.5Na0.5NbO3)、量子顺电体SrTiO3以及三元固溶体(0.29PIN-0.45PMN-0.26PT和0.36PIN-0.36PMN-0.28PT)温度驱动的相变过程,模拟结果与实验结果具有很好的一致性。基于NPT系综的分子动力学模拟得到温度与晶格常数的关系显示:在PbTiO3中,模拟预测了从四方晶系(T,空间群P4mm)向立方晶系(C,空间群Pm3¯m)的相转变,相变温度(Tc)约为550 K (图7a[107]),而在A位掺杂的Pb0.5Sr0.5TiO3固溶体中,Tc降至约280 K (图7d[107])。相比之下,使用DPA-1模型模拟的B位掺杂的PbZr0.5Ti0.5O3固溶体,在低温下为菱形结构(R,空间群R3m),随着温度的升高发生了菱形-四方-立方(R-T-C)的相变(图7g[107]),与实验结果一致。量子顺电体SrTiO3随着温度的升高表现出四方-立方相变(I4/mcmPm3¯m),其特征是TiO6八面体倾斜角的减小。这个相变对应着一个约为1 meV/atom的微小能垒,DPA-1模型成功地复现了该相变过程(图7b[107]),理论上的Tc值为150 K,与实验值105 K相当。此外,DPA-1模型还正确预测了BaTiO3和K0.5Na0.5NbO3中的相变过程,即菱形-正交-四方-立方(R-O-T-C) (图7c和h[107])。对于像PIN-PMN-PT这样复杂的包含6种元素的固溶体,DPA-1不仅能够复现实验中观察到的T-C相变,还能够正确预测由组分变化导致的Tc的变化趋势。如图7f和i[107]所示,0.29PIN-0.45PMN-0.26PT到0.36PIN-0.36PMN-0.28PT相变温度约升高50 K,类似于实验中PIN的组分含量从29%增加到36%,而Tc相应升高约60 K。值得说明的是,铁电相变的理论Tc值通常比实验值低100~200 K。这种差异是通过拟合PBEsol密度泛函计算结果所开发的力场的常见特征,考虑到DPA-1模型预测结果与DFT计算结果表现出的高度的一致性,Tc的低估更可能是由于PBEsol在预测有限温度方面具有局限性,而不是DPA-1模型精度的问题。

图7

图7   基于通用原子间势模拟的温度与晶格常数的相关性[107]

Fig.7   Correlation of temperature with lattice constant based on generalized interatomic potential simulations (T—tetragonal, C—cubic, R—rhombohedral, O—orthorhombic)

(a) PbTiO3 (b) SrTiO3 (c) BaTiO3 (d) Pb0.5Sr0.5TiO3 (e) KNbO3

(f) 0.29PIN-0.45PMN-0.26PT (PIN—Pb(In1/2Nb1/2)O3, PMN—Pb(Mg1/3Nb2/3)O3, PT—PbTiO3)

(g) PbZr0.5Ti0.5O3 (h) K0.5Na0.5NbO3 (i) 0.36PIN-0.36PMN-0.28PT


4 深度势在铁电材料中的应用

4.1 SrTiO3 极性畴界诱导的挠曲铁电和体光伏效应

SrTiO3 (STO)被认为是氧化物基电子器件中至关重要的材料之一。STO拥有许多奇特的物理性质,如二维电子气[108~110]、Rashba自旋轨道耦合[111~113]、界面超导性[114]以及潜在铁电性[115]等。STO是为数不多的量子顺电材料之一,量子涨落和反铁电畸变会在低温下抑制铁电极化序,从而导致非极性顺电态。STO反铁电畸变八面体转角如图8a[116]所示。研究人员发现了多种稳定铁电性的手段,例如应变、掺杂、以及缺陷工程等。基于深度势能,He等[116]首先开发了STO的机器学习势场,预测了STO在面内双轴应变下的相图(图8b[116])。在原子层面深入研究了铁电相和反铁电畸变的结构转变,揭示了低温时应变条件下铁电相与反铁电畸变之间的关联性。随着温度的升高,这种铁电相转变为反铁电畸变相,伴随着有序-无序相转变的特征(图8c[116])。该模型在分子动力学层面提供了STO铁电相转变行为的研究,证明了机器学习方法在复杂钙钛矿材料中的应用。

图8

图8   反铁电畸变八面体转角(φ)的示意图,深势分子动力学模拟双轴面内应变下SrTiO3 (STO)块体的相图,及STO超胞(5000个原子)在双轴面内应变(-0.8%)条件下极化和ϕ随温度变化的曲线[116]

Fig.8   Schematic representation of the inverse ferroelectric distortion octahedral turning angle (φ) (φn is defined as the antiferrodistortive (AFD) order parameter, where the index n is the sequence number of unit cell, and θ is the rotation angle of TiO6 octahedra in each unit cell) (a), phase diagram of the SrTiO3 (STO) block under biaxial in-plane strain simulated by deep potential molecular dynamics (The ferroelectric (FE) and AFD transition temperatures at different strains are indicated by blue square dots and red dots, respectively. T represents temperature) (b), and curves of polarization and octahedral turning angle (ϕ) versus temperature for STO supercells (5000 atoms) under biaxial in-plane strain (-0.8%) (c)[116]


基于上述深度势,并结合DFT计算模拟,He 等[117]进一步对STO畴界的极化性质及其在应变下的动态响应进行了深入研究。尽管已经有实验结果表明STO中孪畴壁存在有极性[118~120],但极化是否有双稳态,以及极化如何被调控等问题都尚未解决。该工作探究了STO中极性畴界的行为特征,最终提出通过弯曲形变翻转和调控畴界极化的方案。如图9[117]所示,这些畴界在(001)面呈现出自发的凹凸结构,其中凸角对应极化向上的畴界,而凹角对应极化向下的畴界。因此,从宏观上来看,STO并不表现出明显的极性特征。当施加弯曲形变时,部分畴界会发生定向旋转,使得(001)面的凹凸角相互转换,从而导致畴界极化的翻转,并最终产生[001]方向的净极化。需要注意的是,与传统的体挠曲电效应不同,弯曲形变被完全畴界凹凸结构的弛豫所支配,因此在体相区域不存在梯度应变。因此,即使在弯曲应力撤除后,STO薄膜仍然能够保持弯曲状态,并且具有剩余极化。这种弯曲应力的作用最终使得STO中的极化畴壁极化得以保留,并表现出类似铁电材料的电滞回线行为。总体来说,这项研究提出了一种通过挠曲铁电效应来调控非极性体系中畴界极性的新方法,这使得极性畴界有望成为纳米功能器件设计中的潜在功能单元。

图9

图9   SrTiO3 (STO)薄膜中畴界格点模型示意图,通过弯曲形变使极性畴界进行90°旋转的示意图,及应变下STO薄膜产生类电滞回线特征[117]

Fig.9   Schematic of the domain lattice point model in SrTiO3 (STO) films (Where the domains generate spontaneous concave and convex undulations in the (001) plane, with the convex angle corresponding to the domains with upward polarization and the concave angle corresponding to the domains with downward polarization, and the domains can be oriented to rotate in order to flip the polarization. a and c are lattice parameters, and α is the angel between a-c domain) (a), schematic diagram of a 90° rotation of polarized domain boundaries by bending deformation (Pmacro is the macroscopic polarization, head-to-tail and head-to-head domain configurations are denoted as HT and HH, respectively) (b), and hysteresis-like features of the STO film under strain, and after the stress is removed, the STO can still maintain the bent state with residual polarization (c)[117]


4.2 HfO2O2-迁移率的动力学研究

HfO2的重要应用之一是非易失性阻变随机存取存储器(ReRAM)[121]。HfO2 - x' (x'代表O空位)中O空位的形成和破坏[122]可以实现存储状态的切换,进一步形成可逆的导电纤维,这一独特的阻变机制引起了广泛的关注。另一方面,HfO2Pca21相还具有稳定的铁电性,并且伴随着复杂的铁电极化反转机制。不难发现,这2种现象都与O2-的运动密切相关[123],具体来说,HfO2Pca21相的极化反转是由外部电场驱动的O2-局域位移引起的,而HfO2 - x 的离子电导则涉及离子的长程输运。尽管HfO2薄膜的厚度只有约1 nm,但仍然表现出较强的剩余极化[53],当在这样的薄膜上施加几伏特的电压时,可以产生高达9 MV/cm的电场[124]。因此,探索铁电极化反转与离子输运之间的潜在相互作用对于开发可靠的、高密度的HfO2基纳米电子器件至关重要。HfO2铁电相的极化反转机制涉及多种类型的路径,其微观机制目前存在一定争议[125,126]。为了更深入地理解这一复杂现象,需要从晶格振动模式的角度来审视HfO2的结构。具体地,X2-晶格振动模式揭示了相邻O2-在与极化轴垂直的方向上的反平行位移,对极化反转过程起着重要作用。Ma和Liu[127]研究发现,在极化反转过程中能够保持X2-符号不变的路径具有相对较低的能垒。铁电相HfO2的结构如图10a和b[128]所示,HfO2的极化反转机制主要分为内部位移(shift in,SI)和跨越位移(shift across,SA) 2种类型(图10c[128])。SI路径(SI可分为两段,即SI-1和SI-2)中,O2-在两层Hf平面之间运动,而在SA路径中,O2-则穿越Hf平面。使用DFT的变胞微动弹性带(VCNEB)计算了几种极化反转路径的能垒,结果显示SI-1、SI-2和SA的能垒分别为0.39、0.22和0.79 eV,并且会随着外加电场的增大逐渐减小(图10d和e[128])。同时铁电HfO2的深度势能模型也能够准确预测这些能垒的高低,并且电场依赖的极化反转能垒在实验上观测到的矫顽场范围内[124,129,130]。分子动力学模拟结果表明,在某些特定的电场强度下,2种极化反转机制均可被激活,即使在没有O空位的情况下也能够发生,并且伴随着O2-的持续流动。

图10

图10   铁电相HfO2的极化反转路径[128]

Fig.10   Polarization reversal paths in the ferroelectric phase HfO2 [128]

(a) vibrational modes of X2- crystals in a single cell of Pca21, with outwardly and inwardly shifted oxygen atoms indicated by purple and brown-orange spheres, respectively, and polarization along the z-axis

(b) Pca21 has alternating arrangements of Onp and Op, with gray shaded regions marking the polar regions

(c) schematic representation of the shift in (SI) and shift across (SA) polarization reversal paths driven by an external electric field (ε). In the SA path, the Onp ion X2- sign is reversed (indicated in grey during the transition). The SI and SA paths can start from the same structure, represented by P vectors in opposite directions (green arrows) to ensure compatibility with classical electrodynamics

(d) calculated results of the minimum energy paths for different polarization reversal paths, lines indicate the results of the DFT, and scatters indicate the results of the deep neural network-based force field prediction (λ represents the polariza-tion state (polar-nonpolar-polar))

(e) polarization reversal energy barrier versus electric field strength (|ε |)


另一方面,O2-在HfO2中的运输与极化反转之间存在着密切的联系。经过SI路径和SA路径的交替,可以看作是thouless pumping过程,可以通过施加恒定的单向电场来实现。Ma和Liu[127]基于深度势能分子动力学模拟研究了含O空位的HfO2,发现在单向电场能够驱动连续的SI和SA极化反转过程中,即使在没有O空位的情况下,也能够支持O2-的持续流动。在初始构型中,O2-位于底部Hf平面附近,而负电场(沿+z方向)驱动了SI类型的极化反转。在这一过程中,带有负电荷的O2-逆着电场方向移动。值得注意的是,HfO2单胞可以转化为反铁电相,随后在同向电场的作用下,再从反铁电相进一步转变回铁电相(图11a[128])。这2个过程都是通过SA机制完成的。从局部微观构型来看,O原子沿着y轴平移了半个铁电相单胞的距离,返回到其原始构型。如果将特定的构型赋予一个固定的极化方向,就难以解释这种相位循环的现象,这表明铁电极化具有几何-量子相位特性,不具有确定的方向。这一现象反映了铁电极化的本质是多值Berry相位,并非具有确定方向的矢量。采用Berry相位法对铁电HfO2中SI和SA机制的极化进行定量计算,结果表明SI-2路径的极化特征与SI-1路径相似。

图11

图11   O2-输运与铁电极化反转的成核和生长机制相耦合[128]

Fig.11   Oxygen ion transport is coupled to the nucleation and growth mechanism of the ferroelectric polarization reversal[128]

(a) polar-antipolar phase cycling induced by successive SI and SA ferroelectric transitions. The highlighted marker Onp in the initial structure, δ = δ0 (defined as displacement of the Op ion relative to the top Hf plane), becomes Op after SI-2, and δ = -δ0, becomes Op after SA

(b) schematic representation of stochastic nucleation in a three-dimensional bulk. The nucleus is two-dimensional in the x-z plane and its thickness corresponds to half the cell length along the y-axis of the Pca21 phase of HfO2

(c) 2D-dimensional nucleus extracted from a DPMD simulation trace of a supercell containing 28800 atoms. The profile of the nucleus was determined based on the displacement δ-value of the Op ion

(d) δ profiles along the z and x directions labeled in Fig.11c


此外,该工作还指出O2-输运与铁电极化反转的成核和生长机制之间存在有密切关系。相较于SI类型的极化反转路径,SA路径的能垒更高,因此SA是极化反转的决速步。HfO2中成核的区域由完成SA极化反转的单胞所组成。分子动力学模拟结果表明,在电场的作用下,HfO2的成核和生长机制具有几个微观特征,如图11b和c[128]所示。首先,形成的核是二维的,而不是通常在铁电钙钛矿中观察到的三维小团簇。核在y轴方向仅有半个晶胞的厚度,且在x-z平面中呈瘦钻石形状;其次,形成的核具有各向异性的扩散界面,显著的扩散性降低了界面能量,从而降低了成核壁垒;最后,HfO2的成核过程具有随机性,不同尺寸的核随机地出现在整个体系中,但只有那些超过临界尺寸的核才会继续扩展,最终导致整个xz层的极化反转。如图11d[128]所示,纵向的扩散系数(γz )在两侧分别为0.89和0 nm。相比之下,横向扩散系数(γx )在两侧大致相同(0.37 nm),表明显著的扩散差异降低了界面能量,从而降低了成核壁垒。

5 总结与展望

铁电材料作为材料科学领域的一类重要功能材料,伴随着科学技术与硬件需求的不断发展,人们对其关注度也在不断地提高。通过材料模拟的手段深入理解背后的科学原理,提高重要铁电材料的性能变得尤为重要。另一方面,随着研究人员对更准确、高效原子级模拟需求的不断增长,基于机器学习的原子势场逐渐在广泛的材料科学领域中获得认可。在研究对象复杂、现象微妙的领域,这一方法显得尤为重要。本综述深入探讨了基于机器学习的DP方法在铁电材料中的开发、测试以及应用。基于DP,介绍了这一AI辅助加速的力场开发方法在复杂钙钛矿铁电材料以及重要铁电材料HfO2体系中的优异表现。DP模型在描述HfO2的结构性质、热力学稳定性以及相转变行为上表现出与DFT相同的精度,同时在多元复杂钙钛矿铁电材料体系中表现出优异的可扩展性和可移植性。DP模型在保证第一性原理计算模拟精度的同时,大幅缩减了力场开发所需要的精力和成本。更进一步,基于DP模型,发现了HfO2中偏置电压诱导的超高O2-迁移率,揭示了其中的重要物理内涵,将HfO2中重要的极化反转过程与O空位迁移相结合,凸显了基于机器学习的MD模拟在没有任何先验假设的情况下提供精确原子级别动力学行为描述的能力。

尽管铁电材料的分子动力学模拟已经取得了一些成果,但同时仍然面临许多挑战。例如,在实际应用中,HfO2薄膜多为多晶形式,但由于多晶薄膜具有各种相和结构缺陷,建模异常困难。在材料计算模拟中,研究对象主要还是以单晶为主,这也成为了理论计算中的一大挑战。为了更好地理解铁电材料的真实行为并预测其性能表现,采用结合密度泛函理论、分子动力学和相场建模的多尺度方法是大势所趋。如何将不同尺度的模拟方法结合在一起,也是未来机器学习在材料研究中的重要发展方向之一。此外,提升机器学习的可移植性、开发更高效的算法以及改进计算硬件性能,都是加速材料模拟的重点。

参考文献

Ielmini D, Wong H S P.

In-memory computing with resistive switching devices

[J]. Nat. Electron., 2018, 1: 333

[本文引用: 1]

Salahuddin S, Ni K, Datta S.

The era of hyper-scaling in electronics

[J]. Nat. Electron., 2018, 1: 442

[本文引用: 1]

Aggarwal S, Dhote A M, Li H, et al.

Conducting barriers for vertical integration of ferroelectric capacitors on Si

[J]. Appl. Phys. Lett., 1999, 74: 230

[本文引用: 1]

Slack J R, Burfoot J C.

Flash evaporation of ferroelectric thin films

[J]. Thin Solid Films, 1970, 6: 233

Mcadams H P, Acklin R, Blake T, et al.

A 64-mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process

[J]. IEEE J. Solid-State Circuits, 2004, 39: 667

[本文引用: 1]

Batra I P, Wurfel P, Silverman B D.

Phase transition, stability, and depolarization field in ferroelectric thin films

[J]. Phys. Rev., 1973, 8B: 3257

[本文引用: 1]

Wurfel P, Batra I P.

Depolarization-field-induced instability in thin ferroelectric films—Experiment and theory

[J]. Phys. Rev., 1973, 8B: 5126

[本文引用: 1]

Schenk T, Schroeder U, Pešić M, et al.

Electric field cycling behavior of ferroelectric hafnium oxide

[J]. ACS Appl. Mater. Interfaces, 2014, 6: 19744

[本文引用: 1]

Megaw H D.

Crystal structure of barium titanate

[J]. Nature, 1945, 155: 484

[本文引用: 1]

Miyake S, Ueda R.

On polymorphic change of BaTiO3

[J]. J. Phys. Soc. Jpn., 1946, 1: 32

von Hippel A, Breckenridge R G, Chesley F G, et al.

High dielectric constant ceramics

[J]. Ind. Eng. Chem., 1946, 38: 1097

[本文引用: 1]

Shirane G, Hoshino S.

On the phase transition in lead titanate

[J]. J. Phys. Soc. Jpn., 1951, 6: 265

[本文引用: 1]

Shirane G, Suzuki K, Takeda A.

Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study

[J]. J. Phys. Soc. Jpn., 1952, 7: 12

[本文引用: 1]

Moreau J M, Michel C, Gerson R, et al.

Ferroelectric BiFeO3 X-ray and neutron diffraction study

[J]. J. Phys. Chem. Solids, 1971, 32: 1315

[本文引用: 1]

Jonker G H, van Santen J H.

Properties of barium titanate in connection with its crystal structure

[J]. Science, 1949, 109: 632

PMID      [本文引用: 1]

Jeong M, Choi I W, Go E M, et al.

Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss

[J]. Science, 2020, 369: 1615

DOI      PMID      [本文引用: 1]

Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to achieve the commercial viability of next-generation photovoltaics. Considering the benefits of fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are developed and used as HTMs in PSCs. The structure-property relationship induced by constitutional isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along with long-term stability in wet conditions without encapsulation (87% efficiency retention after 500 hours). We also achieve an efficiency of 22.31% in the large-area cell.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Jeong J, Kim M, Seo J, et al.

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

[J]. Nature, 2021, 592: 381

Min H, Lee D Y, Kim J, et al.

Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes

[J]. Nature, 2021, 598: 444

[本文引用: 1]

Liu Z, Qiu W D, Peng X M, et al.

Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation

[J]. Adv. Mater., 2021, 33: 2103268

[本文引用: 1]

Chiba T, Hayashi Y, Ebe H, et al.

Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices

[J]. Nat. Photon., 2018, 12: 681

Kim J S, Heo J M, Park G S, et al.

Ultra-bright, efficient and stable perovskite light-emitting diodes

[J]. Nature, 2022, 611: 688

[本文引用: 1]

Dou L T, Yang Y, You J B, et al.

Solution-processed hybrid perovskite photodetectors with high detectivity

[J]. Nat. Commun., 2014, 5: 5404

DOI      PMID      [本文引用: 1]

Photodetectors capture optical signals with a wide range of incident photon flux density and convert them to electrical signals instantaneously. They have many important applications including imaging, optical communication, remote control, chemical/biological sensing and so on. Currently, GaN, Si and InGaAs photodetectors are used in commercially available products. Here we demonstrate a novel solution-processed photodetector based on an organic-inorganic hybrid perovskite material. Operating at room temperature, the photodetectors exhibit a large detectivity (the ability to detect weak signals) approaching 10(14) Jones, a linear dynamic range over 100 decibels (dB) and a fast photoresponse with 3-dB bandwidth up to 3 MHz. The performance is significantly better than most of the organic, quantum dot and hybrid photodetectors reported so far; and is comparable, or even better than, the traditional inorganic semiconductor-based photodetectors. Our results indicate that with proper device interface design, perovskite materials are promising candidates for low-cost, high-performance photodetectors.

Deumel S, van Breemen A, Gelinck G, et al.

High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites

[J]. Nat. Electron., 2021, 4: 681

[本文引用: 1]

Qin C J, Sandanayaka A S D, Zhao C Y, et al.

Stable room-temperature continuous-wave lasing in quasi-2D perovskite films

[J]. Nature, 2020, 585: 53

[本文引用: 1]

Park Y, Kim S H, Lee D, et al.

Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory

[J]. Nat. Commun., 2021, 12: 3527

DOI      PMID      [本文引用: 1]

Resistive switching memory that uses halide perovskites (HP) has been considered as next-generation storage devices due to low operation voltage and high on/off ratio. However, the memory still faces challenges for stable operation with fast switching speed, which hinders the practical application. Thus, it should be considered from the stage of designing the HP for memory applications. Here, we design the perovskite memory using a high-throughput screening based on first-principles calculations. Total 696 compositions in four different crystal structures are investigated and essential parameters including stability, vacancy formation, and migration are considered as the descriptor. We select dimer-CsSbI as an optimal HP for memory; the device that uses dimer-CsSbI has ultra-fast switching speed (~20 ns) compared to the device that uses layer-CsSbI (>100 ns). The use of lead-free perovskite avoids environmental problems caused by lead in perovskite. These results demonstrate the feasibility to design the memory with ultra-fast switching speed.

Choi J, Han J S, Hong K, et al.

Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses

[J]. Adv. Mater., 2018, 30: 1704002

[本文引用: 1]

Fu R J, Zhao W Y, Wang L R, et al.

Pressure-induced emission toward harvesting cold white light from warm white light

[J]. Angew. Chem. Int. Ed., 2021, 60: 10082

DOI      PMID      [本文引用: 1]

The pressure-induced emission (PIE) behavior of halide perovskites has attracted widespread attention and has potential application in pressure sensing. However, high-pressure reversibility largely inhibits practical applications. Here, we describe the emission enhancement and non-doping control of the color temperature in two-dimensional perovskite (C H CH CH NH ) PbCl ((PEA) PbCl ) nanocrystals (NCs) through high-pressure processing. A remarkable 5 times PIE was achieved at a mild pressure of 0.4 GPa, which was highly associated with the enhanced radiative recombination of self-trapped excitons. Of particular importance is the retention of the 1.6 times emission of dense (PEA) PbCl NCs upon the complete release of pressure, accompanied by a color change from "warm" (4403 K) to "cold" white light with 14295 K. The irreversible pressure-induced structural amorphization, which facilitates the remaining local distortion of inorganic Pb-Cl octahedra with respect to the steric hindrance of organic PEA cations, should be greatly responsible for the quenched high-efficiency photoluminescence.© 2021 Wiley-VCH GmbH.

Schroeder U, Park M H, Mikolajick T, et al.

The fundamentals and applications of ferroelectric HfO2

[J]. Nat. Rev. Mater., 2022, 7: 653

[本文引用: 1]

Böscke T S, Müller J, Bräuhaus D, et al.

Ferroelectricity in hafnium oxide thin films

[J]. Appl. Phys. Lett., 2011, 99: 102903

[本文引用: 1]

Park M H, Lee Y H, Mikolajick T, et al.

Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides

[J]. Adv. Elect. Mater., 2019, 5: 1800522

[本文引用: 1]

Schroeder U, Yurchuk E, Müller J, et al.

Impact of different dopants on the switching properties of ferroelectric hafniumoxide

[J]. Jpn. J. Appl. Phys., 2014, 53: 08LE02

[本文引用: 1]

Starschich S, Boettger U.

An extensive study of the influence of dopants on the ferroelectric properties of HfO2

[J]. J. Mater. Chem., 2017, 5C: 333

Park M H, Schenk T, Fancher C M, et al.

A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants

[J]. J. Mater. Chem., 2017, 5C: 4677

Xu L, Nishimura T, Shibayama S, et al.

Kinetic pathway of the ferroelectric phase formation in doped HfO2 films

[J]. J. Appl. Phys., 2017, 122: 124104

Batra R, Huan T D, Rossetti G A, et al.

Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration

[J]. Chem. Mater., 2017, 29: 9102

[本文引用: 1]

Materlik R, Künneth C, Kersch A.

The origin of ferroelectricity in Hf1 - x Zr x O2: A computational investigation and a surface energy model

[J]. J. Appl. Phys., 2015, 117: 134109

[本文引用: 2]

Park M H, Lee Y H, Kim H J, et al.

Ferroelectricity and antiferroelectricity of doped thin HfO2-based films

[J]. Adv. Mater., 2015, 27: 1811

[本文引用: 1]

Polakowski P, Müller J.

Ferroelectricity in undoped hafnium oxide

[J]. Appl. Phys. Lett., 2015, 106: 232905

Batra R, Tran H D, Ramprasad R.

Stabilization of metastable phases in hafnia owing to surface energy effects

[J]. Appl. Phys. Lett., 2016, 108: 172902

Künneth C, Materlik R, Kersch A.

Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1 - x Zr x O2 grains

[J]. J. Appl. Phys., 2017, 121: 205304

Park M H, Lee Y H, Kim H J, et al.

Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment

[J]. Nanoscale, 2017, 9: 9973

DOI      PMID      [本文引用: 1]

The unexpected ferroelectric properties of nanoscale hafnia-zirconia are considered to be promising for a wealth of applications including ferroelectric memory, field effect transistors, and energy-related applications. However, the reason why the unexpected ferroelectric Pca2 phase can be stabilized has not been clearly understood although numerous extensive theoretical and experimental results have been reported recently. The ferroelectric orthorhombic phase is not a stable phase under processing conditions from the viewpoint of bulk free energy. Although the possibility of stabilization of the ferroelectric phase due to the surface energy effect has been theoretically suggested, such a theoretical model has not been systematically compared with actual experimental results. In this study, the experimental observations on polymorphism in nanoscale HfO-ZrO solid solution thin films of a wide range of film compositions and thicknesses are comprehensively related to the theoretical predictions based on a thermodynamic surface energy model. The theoretical model can semi-quantitatively explain the experimental results on the phase-evolution, but there were non-negligible discrepancies between the two results. To understand these discrepancies, various factors such as the film stress, the role of a TiN capping layer, and the kinetics of crystallization are systematically studied. This work also reports on the evolution of electrical properties of the film, i.e. dielectric, ferroelectric, anti-ferroelectric, and morphotropic phase changes, as a function of the film composition and thickness. The in-depth analyses of the phase change are expected to provide an important guideline for subsequent studies.

Xu L, Nishimura T, Shibayama S, et al.

Ferroelectric phase stabilization of HfO2 by nitrogen doping

[J]. Appl. Phys. Express, 2016, 9: 091501

[本文引用: 1]

Pal A, Narasimhan V K, Weeks S, et al.

Enhancing ferroelectricity in dopant-free hafnium oxide

[J]. Appl. Phys. Lett., 2017, 110: 022903

[本文引用: 1]

Luo Q, Cheng Y, Yang J G, et al.

A highly CMOS compatible hafnia-based ferroelectric diode

[J]. Nat. Commun., 2020, 11: 1391

DOI      PMID      [本文引用: 1]

Memory devices with high speed and high density are highly desired to address the 'memory wall' issue. Here we demonstrated a highly scalable, three-dimensional stackable ferroelectric diode, with its rectifying polarity modulated by the polarization reversal of HfZrO films. By visualizing the hafnium/zirconium lattice order and oxygen lattice order with atomic-resolution spherical aberration-corrected STEM, we revealed the correlation between the spontaneous polarization of HfZrO film and the displacement of oxygen atom, thus unambiguously identified the non-centrosymmetric Pca2 orthorhombic phase in HfZrO film. We further implemented this ferroelectric diode in an 8 layers 3D array. Operation speed as high as 20 ns and robust endurance of more than 10 were demonstrated. The built-in nonlinearity of more than 100 guarantees its self-selective property that eliminates the need for external selectors to suppress the leakage current in large array. This work opens up new opportunities for future memory hierarchy evolution.

Bouaziz J, Rojo Romeo P, Baboux N, et al.

Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge?

[J]. Appl. Phys. Lett., 2021, 118: 082901

Wu J X, Mo F, Saraya T, et al.

Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application

[J]. IEEE Trans. Electron Devices, 2021, 68: 6617

Beyer S, Dünkel S, Trentzsch M, et al.

FEFET: A versatile CMOS compatible device with game-changing potential

[A]. 2020 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2020: 17

[本文引用: 1]

Huan T D, Sharma V, Rossetti G A, et al.

Pathways towards ferroelectricity in hafnia

[J]. Phys. Rev., 2014, 90B: 064111

[本文引用: 1]

Sang X H, Grimley E D, Schenk T, et al.

On the structural origins of ferroelectricity in HfO2 thin films

[J]. Appl. Phys. Lett., 2015, 106: 162905

[本文引用: 1]

Mittmann T, Materano M, Chang S C, et al.

Impact of oxygen vacancy content in ferroelectric HZO films on the device performance

[A]. 2020 IEEE International Electron Devices Meeting (IEDM) [C]. Francisco: IEEE, 2020: 12

[本文引用: 1]

Ali T, Polakowski P, Riedel S, et al.

High endurance ferroelectric hafnium oxide-based FEFET memory without retention penalty

[J]. IEEE Trans. Electron Devices, 2018, 65: 3769

[本文引用: 1]

Xiao W W, Liu C, Peng Y, et al.

Memory window and endurance improvement of Hf0.5Zr0.5O2-based FEFETs with ZrO2 seed layers characterized by fast voltage pulse measurements

[J]. Nanoscale Res. Lett., 2019, 14: 254

[本文引用: 1]

Cheema S S, Kwon D, Shanker N, et al.

Enhanced ferroelectricity in ultrathin films grown directly on silicon

[J]. Naure, 2020, 580: 478

[本文引用: 2]

Xiao Z W, Song Z N, Yan Y F.

From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives

[J]. Adv. Mater., 2019, 31: 1803792

[本文引用: 1]

Okuno J, Kunihiro T, Konishi K, et al.

High-endurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application

[A]. 2021 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2021: 1

[本文引用: 1]

Yoo Y W, Jeon W, Lee W, et al.

Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes

[J]. ACS Appl. Mater. Interfaces, 2014, 6: 22474

[本文引用: 1]

Alcala R, Materano M, Lomenzo P D, et al.

BEOL integrated ferroelectric HfO2-based capacitors for FeRAM: Extrapolation of reliability performance to use conditions

[J]. IEEE J. Electron Devices Soc., 2022, 10: 907

[本文引用: 1]

Hur J, Luo Y C, Tasneem N, et al.

Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process

[J]. IEEE Trans. Electron Devices, 2021, 68: 3176

[本文引用: 1]

Metropolis N, Rosenbluth A W, Rosenbluth M N, et al.

Equation of state calculations by fast computing machines

[J]. J. Chem. Phys., 1953, 21: 1087

[本文引用: 1]

Alder B J, Wainwright T E.

Studies in molecular dynamics. I. General method

[J]. J. Chem. Phys., 1959, 31: 459

Rahman A.

Correlations in the motion of atoms in liquid argon

[J]. Phys. Rev., 1964, 136: A405

Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications [M]. New York: Academic Press, 2001: 63

[本文引用: 1]

Lennard-Jones J E.

Cohesion

[J]. Proc. Phys. Soc., 1931, 43: 461

[本文引用: 1]

Daw M S, Baskes M I.

Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals

[J]. Phys. Rev., 1984, 29B: 6443

[本文引用: 1]

Baskes M I.

Modified embedded-atom potentials for cubic materials and impurities

[J]. Phys. Rev., 1992, 46B: 2727

[本文引用: 1]

Tersoff J.

New empirical approach for the structure and energy of covalent systems

[J]. Phys. Rev., 1988, 37B: 6991

[本文引用: 1]

Shin Y H, Grinberg I, Chen I W, et al.

Nucleation and growth mechanism of ferroelectric domain-wall motion

[J]. Nature, 2007, 449: 881

[本文引用: 1]

Brown I D, Shannon R D.

Empirical bond-strength-bond-length curves for oxides

[J]. Acta Cryst., 1973, 29A: 266

[本文引用: 1]

Brown I D, Wu K K.

Empirical parameters for calculating cation-oxygen bond valences

[J]. Acta Cryst., 1976, 32B: 1957

[本文引用: 1]

Liu S, Grinberg I, Rappe A M.

Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations

[J]. J. Phys., 2013, 25: 102202

[本文引用: 1]

Liu S, Grinberg I, Takenaka H, et al.

Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3

[J]. Phys. Rev., 2013, 88B: 104102

[本文引用: 1]

Liu S, Grinberg I, Rappe A M.

Intrinsic ferroelectric switching from first principles

[J]. Nature, 2016, 534: 360

[本文引用: 2]

Shan T R, Devine B D, Kemper T W, et al.

Charge-optimized many-body potential for the hafnium/hafnium oxide system

[J]. Phys. Rev., 2010, 81B: 125328

[本文引用: 1]

Broglia G, Ori G, Larcher L, et al.

Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications

[J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 065006

Schie M, Müller M P, Salinga M, et al.

Ion migration in crystalline and amorphous HfO x

[J]. J. Chem. Phys., 2017, 146: 094508

Sivaraman G, Krishnamoorthy A N, Baur M, et al.

Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide

[J]. npj Comput. Mater., 2020, 6: 104

[本文引用: 1]

Cohen R E.

Origin of ferroelectricity in perovskite oxides

[J]. Nature, 1992, 358: 136

[本文引用: 1]

Phillpot S R, Sinnott S B, Asthagiri A.

Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities

[J]. Annu. Rev. Mater. Res., 2007, 37: 239

[本文引用: 1]

Smith J S, Isayev O, Roitberg A E.

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

[J]. Chem. Sci., 2017, 8: 3192

DOI      PMID      [本文引用: 1]

Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set.

Manzhos S, Carrington T.

Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface

[J]. J. Chem. Phys., 2008, 129: 224104

[本文引用: 1]

Bartók A P, Gillan M J, Manby F R, et al.

Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water

[J]. Phys. Rev., 2013, 88B: 054104

[本文引用: 1]

Morawietz T, Singraber A, Dellago C, et al.

How van der Waals interactions determine the unique properties of water

[J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 8368

DOI      PMID     

Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum.

Ko H Y, Zhang L F, Santra B, et al.

Isotope effects in liquid water via deep potential molecular dynamics

[J]. Mol. Phys., 2019, 117: 3269

[本文引用: 1]

Eshet H, Khaliullin R Z, Kühne T D, et al.

Ab initio quality neural-network potential for sodium

[J]. Phys. Rev., 2010, 81B: 184107

[本文引用: 1]

Botu V, Ramprasad R.

Learning scheme to predict atomic forces and accelerate materials simulations

[J]. Phys. Rev., 2015, 92B: 094306

Zhang Y Z, Wang H D, Chen W J, et al.

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

[J]. Comput. Phys. Commun., 2020, 253: 107206

[本文引用: 5]

Andolina C M, Williamson P, Saidi W A.

Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy

[J]. J. Chem. Phys., 2020, 152: 154701

[本文引用: 1]

Zhang L F, Lin D Y, Wang H, et al.

Active learning of uniformly accurate interatomic potentials for materials simulation

[J]. Phys. Rev. Mater., 2019, 3: 023804

Jiang W R, Zhang Y Z, Zhang L F, et al.

Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space

[J]. Chin. Phys., 2021, 30B: 050706

[本文引用: 1]

Sanville E, Bholoa A, Smith R, et al.

Silicon potentials investigated using density functional theory fitted neural networks

[J]. J. Phys., 2008, 20: 285219

[本文引用: 1]

Behler J, Martoňák R, Donadio D, et al.

Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations

[J]. Phys. Status Solidi, 2008, 245B: 2618

Babaei H, Guo R Q, Hashemi A, et al.

Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies

[J]. Phys. Rev. Mater., 2019, 3: 074603

Bartók A P, Kermode J, Bernstein N, et al.

Machine learning a general-purpose interatomic potential for silicon

[J]. Phys. Rev., 2018, 8X: 041048

[本文引用: 1]

Sosso G C, Miceli G, Caravati S, et al.

Neural network interatomic potential for the phase change material GeTe

[J]. Phys. Rev., 2012, 85B: 174103

[本文引用: 1]

Thomas J C, Bechtel J S, Natarajan A R, et al.

Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3

[J]. Phys. Rev., 2019, 100B: 134101

[本文引用: 1]

Behler J, Parrinello M.

Generalized neural-network representation of high-dimensional potential-energy surfaces

[J]. Phys. Rev. Lett., 2007, 98: 146401

[本文引用: 1]

Bartók A P, Kondor R, Csányi G.

On representing chemical environments

[J]. Phys. Rev., 2013, 87B: 184115

[本文引用: 1]

Zhang L F, Han J Q, Wang H, et al.

Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics

[J]. Phys. Rev. Lett., 2018, 120: 143001

[本文引用: 5]

Zeng J Z, Cao L Q, Xu M Y, et al.

Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation

[J]. Nat. Commun., 2020, 11: 5713

DOI      PMID      [本文引用: 1]

Combustion is a complex chemical system which involves thousands of chemical reactions and generates hundreds of molecular species and radicals during the process. In this work, a neural network-based molecular dynamics (MD) simulation is carried out to simulate the benchmark combustion of methane. During MD simulation, detailed reaction processes leading to the creation of specific molecular species including various intermediate radicals and the products are intimately revealed and characterized. Overall, a total of 798 different chemical reactions were recorded and some new chemical reaction pathways were discovered. We believe that the present work heralds the dawn of a new era in which neural network-based reactive MD simulation can be practically applied to simulating important complex reaction systems at ab initio level, which provides atomic-level understanding of chemical reaction processes as well as discovery of new reaction pathways at an unprecedented level of detail beyond what laboratory experiments could accomplish.

Andrade M F C, Ko H Y, Zhang L F, et al.

Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics

[J]. Chem. Sci., 2020, 11: 2335

[本文引用: 1]

Dai F Z, Wen B, Sun Y J, et al.

Theoretical prediction on thermal and mechanical properties of high entropy (Zr0 .2Hf0 .2Ti0 .2Nb0 .2-Ta0 .2)C by deep learning potential

[J]. J. Mater. Sci. Technol., 2020, 43: 168

[本文引用: 1]

Zhang L F, Wang H, Muniz M C, et al.

A deep potential model with long-range electrostatic interactions

[J]. J. Chem. Phys, 2022, 156: 124107

[本文引用: 2]

Wu J, Zhang Y Z, Zhang L F, et al.

Deep learning of accurate force field of ferroelectric HfO2

[J]. Phys. Rev., 2021, 103B: 024108

[本文引用: 14]

Lyakhov A O, Oganov A R, Stokes H T, et al.

New developments in evolutionary structure prediction algorithm USPEX

[J]. Comput. Phys. Commun., 2013, 184: 1172

[本文引用: 1]

Wu J, Yang J Y, Ma L Y, et al.

Modular development of deep potential for complex solid solutions

[J]. Phys. Rev., 2023, 107B: 144102

[本文引用: 4]

Zhang D, Bi H R, Dai F Z, et al.

Pretraining of attention-based deep learning potential model for molecular simulation

[J]. npj Comput. Mater., 2024, 10: 94

[本文引用: 1]

Wu J, Yang J Y, Liu Y J S, et al.

Universal interatomic potential for perovskite oxides

[J]. Phys. Rev., 2023, 108B: L180104

[本文引用: 13]

Ohtomo A, Hwang H Y.

A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface

[J]. Nature, 2004, 427: 423

[本文引用: 1]

Popović Z S, Satpathy S, Martin R M.

Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface

[J]. Phys. Rev. Lett., 2008, 101: 256801

Santander-Syro A F, Copie O, Kondo T, et al.

Two-dimensional electron gas with universal subbands at the surface of SrTiO3

[J]. Nature, 2011, 469: 189

[本文引用: 1]

Caviglia A D, Gabay M, Gariglio S, et al.

Tunable Rashba spin-orbit interaction at oxide interfaces

[J]. Phys. Rev. Lett., 2010, 104: 126803

[本文引用: 1]

Ben Shalom M, Sachs M, Rakhmilevitch D, et al.

Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study

[J]. Phys. Rev. Lett., 2010, 104: 126802

Zhong Z C, Tóth A, Held K.

Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces

[J]. Phys. Rev., 2013, 87B: 161102

[本文引用: 1]

Ge J F, Liu Z L, Liu C H, et al.

Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3

[J]. Nat. Mater., 2014, 14: 285

[本文引用: 1]

Xu R J, Huang J W, Barnard E S, et al.

Strain-induced room-temperature ferroelectricity in SrTiO3 membranes

[J]. Nat. Commun., 2020, 11: 3141

[本文引用: 1]

He R, Wu H Y, Zhang L F, et al.

Structural phase transitions in SrTiO3 from deep potential molecular dynamics

[J]. Phys. Rev., 2022, 105B: 064104

[本文引用: 6]

He R, Xu H W, Yang P J, et al.

Ferroelastic twin-wall-mediated ferroelectriclike behavior and bulk photovoltaic effect in SrTiO3

[J]. Phys. Rev. Lett., 2024, 132: 176801

[本文引用: 4]

Scott J F, Salje E K H, Carpenter M A.

Domain wall damping and elastic softening in SrTiO3: Evidence for polar twin walls

[J]. Phys. Rev. Lett., 2012, 109: 187601

[本文引用: 1]

Salje E K H, Aktas O, Carpenter M A, et al.

Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO3

[J]. Phys. Rev. Lett., 2013, 111: 247603

Frenkel Y, Haham N, Shperber Y, et al.

Imaging and tuning polarity at SrTiO3 domain walls

[J]. Nat. Mater., 2017, 16: 1203

[本文引用: 1]

Sulzbach M C, Tan H, Estandía S, et al.

Polarization and resistive switching in epitaxial 2 nm Hf0 .5Zr0 .5O2 tunnel junctions

[J]. ACS Appl. Electron. Mater., 2021, 3: 3657

[本文引用: 1]

Traore B, Blaise P, Vianello E, et al.

On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying

[J]. IEEE Trans. Electron. Devices, 2015, 62: 4029

[本文引用: 1]

Nukala P, Ahmadi M, Wei Y F, et al.

Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices

[J]. Science, 2021, 372: 630

DOI      PMID      [本文引用: 1]

Unconventional ferroelectricity exhibited by hafnia-based thin films, robust at nanoscale sizes, presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated LaSrMnO/HfZrO capacitor interfaced with various top electrodes while in situ electrical biasing using atomic resolution microscopy with direct oxygen imaging, as well as synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we clearly show reversible oxygen vacancy migration with electrodes being the source and sink of oxygen, and the dielectric layer acting as a fast conduit at millisecond timescales. With non-reactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source/sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined to oxygen voltammetry.Copyright © 2021, American Association for the Advancement of Science.

Song T F, Bachelet R, Saint-Girons G, et al.

Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films

[J]. ACS Appl. Electron. Mater., 2020, 2: 3221

[本文引用: 2]

Choe D H, Kim S, Moon T, et al.

Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls

[J]. Mater. Today, 2021, 50: 8

[本文引用: 1]

Wei W, Zhao G Q, Zhan X P, et al.

Switching pathway-dependent strain-effects on the ferroelectric properties and structural deformations in orthorhombic HfO2

[J]. J. Appl. Phys., 2022, 131: 154101

[本文引用: 1]

Ma L Y, Liu S.

Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2

[J]. Phys. Rev. Lett., 2023, 130: 096801

[本文引用: 2]

Ma L Y, Wu J, Zhu T Y, et al.

Ultrahigh oxygen ion mobility in ferroelectric hafnia

[J]. Phys. Rev. Lett., 2023, 131: 256801

[本文引用: 10]

Ku B, Jeon Y R, Choi M, et al.

Effects of post cooling on the remnant polarization and coercive field characteristics of atomic layer deposited Al-doped HfO2 thin films

[J]. Appl. Surf. Sci., 2022, 601: 154039

[本文引用: 1]

Kim M K, Kim I J, Lee J S.

CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory

[J]. Sci. Adv., 2021, 7: eabe1341

[本文引用: 1]

/