Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 80-94    DOI: 10.11900/0412.1961.2022.00165
  研究论文 本期目录 | 过刊浏览 |
晶粒长大对高纯Al {111}/{111}近奇异晶界的影响
冯小铮1, 王卫国1,2(), Gregory S. Rohrer3, 陈松1,2, 洪丽华1,2, 林燕1,2, 王宗谱1, 周邦新4
1 福建理工大学 晶界工程研究所 福州 350118
2 福建理工大学 材料科学与工程学院 福州 350118
3 Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
4 上海大学 材料研究所 上海 200072
Effects of Grain Growth on the {111}/{111} Near Singular Boundaries in High Purity Aluminum
FENG Xiaozheng1, WANG Weiguo1,2(), Gregory S. Rohrer3, CHEN Song1,2, HONG Lihua1,2, LIN Yan1,2, WANG Zongpu1, ZHOU Bangxin4
1 Institute of Grain Boundary Engineering, Fujian University of Technology, Fuzhou 350118, China
2 School of Materials Science and Technology, Fujian University of Technology, Fuzhou 350118, China
3 Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
4 Materials Institute, Shanghai University, Shanghai 200072, China
引用本文:

冯小铮, 王卫国, Gregory S. Rohrer, 陈松, 洪丽华, 林燕, 王宗谱, 周邦新. 晶粒长大对高纯Al {111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94.
Xiaozheng FENG, Weiguo WANG, Rohrer Gregory S., Song CHEN, Lihua HONG, Yan LIN, Zongpu WANG, Bangxin ZHOU. Effects of Grain Growth on the {111}/{111} Near Singular Boundaries in High Purity Aluminum[J]. Acta Metall Sin, 2024, 60(1): 80-94.

全文: PDF(7292 KB)   HTML
摘要: 

{111}/{111}近奇异晶界较比一般晶界更耐蚀,如何提高此类晶界比例以显著提高Al及其合金晶界腐蚀抗力是一个新课题。本工作选用99.99% (质量分数)高纯Al为研究对象,考察晶粒长大对{111}/{111}近奇异晶界的影响。样品经室温多向锻造和370℃再结晶退火后,再经500℃保温不同时间,采用基于EBSD和五参数分析的晶界界面匹配表征方法对样品进行测试和分析。结果表明,随着晶粒长大,{111}/{111}近奇异晶界的比例显著增加。当平均晶粒尺寸由38 μm长大至77 μm时,{111}/{111}近奇异晶界的比例由3.91%增加至6.56%。离线原位EBSD和晶界迹线分析表明,晶粒长大过程中,{111}/{111}近奇异晶界主要通过具有<111>/θ(θ为取向差转角)取向差关系的两两晶粒吞并周边晶粒并相遇后形成;具有<111>/θ取向差关系的相邻晶粒,其晶界通过再取向调整至{111}/{111}位置,亦可形成此类近奇异晶界。{111}/{111}近奇异晶界存在旋错结构,其原子排列有序度显著高于一般晶界,这是此类晶界比一般晶界更耐蚀的原因。

关键词 高纯Al晶粒长大近奇异晶界晶界界面匹配    
Abstract

The {111}/{111} near singular boundary is more resistant to intergranular corrosion than random boundary. At present, enhancing the fraction of such boundary to improve the performance against intergranular corrosion has been the latest issue in microstructure design and control for aluminum and its alloys. In the current work, high-purity aluminum was selected as an experimental material, and the effects of grain growth on {111}/{111} near singular boundary were investigated. First, the sample was given multi-directional forging at room temperature followed by recrystallization annealing at 370oC. The recrystallized samples were heated at 500oC for varied time to promote grain growth and to obtain microstructures with various grain sizes. Then, the {111}/{111} near singular boundary in the samples was measured by grain boundary inter-connection characterization, which was established on the basis of EBSD and five-parameter analysis. Results show that the length fraction of {111}/{111} near singular boundary increases with the increase of grain size. For example, the fraction of {111}/{111} near singular boundaries is 3.91% when the averaged grain size is 38 μm, whereas it increases to 6.56% as the averaged grain size reaches 77 μm. Off-line in situ EBSD coupled with grain boundary trace analysis indicates that the {111}/{111} near singular boundary is primarily formed via the encounter of two growing grains with <111>/θ misorientation relationships (θ is the rotation angle). Meanwhile, the {111}/{111} near singular boundary is also formed via the re-orientation of grain boundaries with <111>/θ misorientation. HRTEM observation reveals that the {111}/{111} near singular boundary has disclination, and the degree of atomic ordering of such a boundary is higher than that of random boundaries. Therefore, such a boundary is more resistant to intergranular corrosion compared with random boundary.

Key wordshigh purity aluminum    grain growth    near singular boundary    grain boundary inter-connection
收稿日期: 2022-04-09     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51971063);中央引导地方科技发展专项项目(2019L3010)
通讯作者: 王卫国,wang_weiguo@vip.163.com,主要从事金属和无机非金属材料晶界工程研究
Corresponding author: WANG Weiguo, professor, Tel: (0591)22863515, E-mail: wang_weiguo@vip.163.com
作者简介: 冯小铮,男,1995年生,硕士生
图1  经反复多向锻造和370℃再结晶后高纯Al显微组织的取向成像显微分析(OIM)图、晶界重构图及取向差分布图
图2  再结晶高纯Al在500℃保温不同时间后的OIM图和取向差分布
图3  再结晶高纯Al在500℃保温不同时间后的特定转轴晶界取向差分布图
图4  再结晶高纯Al在500℃保温1 min的不同取向差{111}/{111}近奇异晶界的五参数晶界面分布(投影在(001)内)
图5  再结晶高纯Al在500℃保温5 min的不同取向差{111}/{111}近奇异晶界的五参数晶界面分布(投影在(001)内)
Annealing time at 500oC / minGB rotation axisGB numberGBLength fraction / %
number fraction / %
1<111>43137.487.70
<112>696312.0812.04
<122>956016.5816.95
5<111>52287.918.24
<112>791811.9812.03
<122>1131417.1217.42
30<111>46598.178.801
<112>694712.1812.02
<122>1008417.6818.24
表1  再结晶高纯Al在500℃保温不同时间后取向差转轴为<111>、<112>和<122>的晶界数量及比例统计
图6  再结晶高纯Al在500℃保温30 min的不同取向差{111}/{111}近奇异晶界的五参数晶界面分布(投影在(001)内)
Annealing time min[uvw]/θPi / %MiWi / (°)Fi / %Ftotal =􀰑Fi / %
1[111]/35°0.511.372.500.263.91
[111]/40°0.642.082.150.34
[111]/50°0.121.482.170.59
[111]/55°1.251.472.210.64
[112]/20°0.681.562.150.35
[112]/30°0.981.481.890.51
[122]/15°0.661.202.050.34
[122]/40°1.701.562.090.88
5[111]/15°0.261.431.770.145.48
[111]/30°0.402.152.010.21
[111]/35°0.551.871.870.29
[111]/40°0.732.442.400.39
[111]/45°1.011.412.070.52
[111]/55°1.571.202.120.80
[112]/25°0.771.252.280.39
[112]/30°1.001.122.040.51
[122]/20°0.641.272.490.33
[122]/25°0.831.341.970.43
[122]/35°1.361.122.110.69
[122]/40°1.521.342.160.78
30[111]/20°0.312.911.690.176.56
[111]/35°0.491.762.350.25
[111]/40°0.701.341.820.36
[111]/45°1.021.722.090.53
[111]/50°1.311.612.090.68
[111]/55°1.901.802.240.99
[112]/15°0.691.602.230.36
[112]/20°0.691.542.820.35
[112]/30°0.891.402.470.45
[122]/25°0.771.702.010.40
[122]/30°1.041.302.040.53
[122]/35°1.221.532.530.62
[122]/40°1.701.412.200.87
表2  再结晶高纯Al在500℃保温不同时间{111}/{111}近奇异晶界相关数据统计
图7  再结晶高纯Al在500℃保温期间具有<111>/θ取向差关系不相邻晶粒长大相遇形成{111}/{111}近奇异晶界离线原位OIM及重叠极图迹线分析
图8  再结晶高纯Al在500℃保温期间具有<111>/θ取向差晶界再取向形成{111}/{111}近奇异晶界离线原位OIM及重叠极图迹线分析
Grain No.Euler angle of growing grainEuler angle of the grain adjacent to growing grainMisorientation between growing grain and the adjacent grain
1(289.1° 20.1° 49°)--
2(0.8° 36.4° 84.6°)[1¯2¯2]/36.6°
3(170.8° 42.3° 10.5°)[14¯4¯]/47.5°
4(257.9° 43.3° 16°)[123]/40.5°
5(79.1° 33° 64.7°)[17¯5]/52.5°
6(343.6° 39.8° 7.1°)[241¯]/32.6°
7(358.2° 43.7° 60.3°)[432]/43.5°
8(145.8° 38.1° 48.8°)--
1(289.1° 20.1° 49°)[111¯]/52.3°
2(0.8° 36.4° 84.6°)[2¯21]/35.3°
7(358.2° 43.7° 60.3°)[62¯3¯]/31.6°
10(153.5° 47.8° 30.7°)[6¯5¯1]/16.6°
11(32° 47.2° 64.6°)[2¯01]/23.6°
12(300.7° 26.6° 54.2°)[2¯1¯3]/58.1°
9(139.4° 53° 47.2°)[211¯]/16.7°
13(286.4° 25.9° 4.7°)[21¯1¯]/40.1°
14(342° 32.3° 71.3°)[31¯1¯]/46.4°
15(149.1° 33.3° 38.8°)--
16(334.8° 19.4° 26.3°)[8¯51¯]/53.0°
17(286.4° 32.6° 16.5°)[023¯]/38.6°
18(36.3° 32° 31.9°)[3¯51]/41.3°
19(77.3° 32.1° 64.3°)[33¯2¯]/52.0°
20(89.2° 30.2° 64.3°)[33¯2¯]/40.4°
21(262° 44.9° 50.6°)[1¯3¯2]/31.7°
22(281.3° 29.4° 49.1°)--
15(149.1° 33.3° 38.8°)[1¯1¯1]/49.1°
21(262° 44.9° 50.6°)[2¯3¯0]/23.8°
23(20.2° 18.4° 57.4°)[03¯1]/38.6°
24(92.7° 41.7° 67.3°)[233]/44.3°
25(236° 39.7° 25.4°)[2¯12¯]/38.9°
26(256.8° 26.1° 29.7°)--
27(268.1° 32.1° 31.3°)[5¯1¯7]/14.1°
28(247.6° 31.6° 37.2°)[310]/7.1°
29(117.8° 35.8° 22.2°)[1¯3¯4]/52.1°
30(203.9° 3° 82.7°)[021¯]/24.4°
31(248.3° 10.3° 57.6°)[2¯3¯4]/25.4°
32(207.7° 36.6° 58.9°)[532¯]/30.0°
33(168.2° 38.5° 4.5°)[12¯3¯]/47.0°
34(66.4° 10.3° 65.7°)[111]/43.9°
35(322.3° 36.4° 41.9°)[2¯01¯]/39.1°
36(271.3° 29.1° 34.3°)[83¯2¯]/18.9°
37(81.1° 30° 65.4°)--
26(256.8° 26.1° 29.7°)[1¯11]/52.0°
32(207.7° 36.6° 58.9°)[01¯1¯]/42.8°
38(19.1° 11.3° 65.1°)[2¯3¯4¯]/40.1°
39(29.5° 18.9° 25.5°)[149]/23.2°
40(38.1° 24.4° 15.7°)[015¯]/20.1°
33(168.2° 38.5° 4.5°)[2¯21]/48.5°
表3  再结晶高纯Al在500℃保温期间具有<111>/θ取向差关系不相邻晶粒及其邻近各晶粒取向统计(对应图7)
Grain No.Euler angle of adjacent grainsEuler angles of grains around two adjacent grainsMisorientation between grains and two adjacent grains
1(82.3° 35.5° 10.9°)--
2(97.1° 39.8° 1°)[5¯31]/10.2°
3(12° 28.3° 40.7°)[3¯2¯3]/47.8°
4(5.7° 44° 16.6°)[111]/57.1°
5(45.3° 43.2° 58.4°)[133¯]/30.5°
6(231° 43.7° 50.2°)[1¯11¯]/44.7°
7(347.2° 11.8° 71.1°)[212¯]/48.9°
6(231° 43.7° 50.2°)--
5(45.3° 43.2° 58.4°)[21¯2]/49.5°
8(55.8° 36.3° 36.9°)[3¯2¯3¯]/59.4°
10(157.8° 24.9° 50.5°)[42¯3]/49.6°
11(172.8° 25.8° 34.9°)[52¯3]/43.6°
12(221.9° 32.3° 43.2°)[313¯]/19.0°
13(234.5° 24.6° 33.2°)[111¯]/23.8°
14(240.2° 27.6° 11.1°)[311¯]/35.7°
7(347.2° 11.8° 71.1°)[23¯2¯]/53.2°
15(337.4° 36.7° 9.2°)--
16(335° 18° 68.7°)[01¯2]/37.5°
17(176.5° 39.3° 88.9°)[231¯]/19.0°
18(163.5° 7.7° 85.8°)[071]/44.9°
19(2.3° 47.5° 57.7°)[313]/30.1°
20(142.2° 37.9° 29.3°)[1¯11¯]/29.9°
21(196.9° 27.1° 40°)[1¯6¯9]/38.0°
20(142.2° 37.9° 29.3°)--
19(2.3° 47.5° 57.7°)[7¯9¯1]/13.8°
22(41.6° 45.2° 60.7°)[32¯3¯]/41.1°
21(196.9° 27.1° 40°)[2¯1¯2¯]/43.7°
23(195.4° 38.7° 73.3°)--
24(160.7° 43.3° 1°)[11¯3¯]/24.6°
25(318.3° 32.6° 88.2°)[11¯2¯]/52.0°
26(259.4° 29° 46.6°)[1¯1¯1]/45°
27(279.6° 29.5° 78.1°)[23¯8]/46.1°
28(305.7° 7.1° 8.9°)[4¯1¯4]/59.5°
29(329.1° 48.9° 43.7°)--
23(195.4° 38.7° 73.3°)[1¯1¯1]/24.8°
28(305.7° 7.1° 8.9°)[233]/53.3°
31(292.6° 44.3° 18.2°)[203]/46.9°
32(264.2° 41.1° 13.6°)[21¯7]/46.5°
33(217.9° 34.7° 53°)[4¯1¯2]/26.5°
30(184.2° 38.8° 83.4°)[342¯]/29.4°
表4  再结晶高纯Al在500℃保温期间具有<111>/θ取向差关系相邻晶粒及其邻近各晶粒取向统计(对应图8)
图9  高纯Al{111}/{111}近奇异晶界HRTEM像和SAED花样
1 Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
2 Wang W G, Zhou B X, Rohrer G S, et al. Textures and grain boundary character distributions in a cold rolled and annealed Pb-Ca based alloy [J]. Mater. Sci. Eng., 2010, A527: 3695
3 Wang W G, Yin F X, Guo H, et al. Effects of recovery treatment after large strain on the grain boundary character distributions of subsequently cold rolled and annealed Pb-Ca-Sn-Al alloy [J]. Mater. Sci. Eng., 2008, A491: 199
4 Liu Z Q, Wang W G. Study on Σ3 boundaries in an cold rolled and recrystallized Al-Cu alloy [J]. J. Chin. Electron Microsc. Soc., 2018, 37: 232
4 刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究 [J]. 电子显微学报, 2018, 37: 232
5 Wang W G, Cai C H, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation [J]. Mater. Charact., 2018, 144: 411
doi: 10.1016/j.matchar.2018.07.040
6 Zhang W Z. Application of the O-lattice model to the calculation of the interfacial dislocations [J]. Acta Metall. Sin., 2002, 38: 785
6 张文征. O点阵模型及其在界面位错计算中的应用 [J]. 金属学报, 2002, 38: 785
7 Bouchet D, Priester L. Intergranular segregation and crystallographic parameters of grain boundaries in nickel-sulfur system [J]. Scr. Metall., 1986, 20: 961
doi: 10.1016/0036-9748(86)90417-5
8 Bouchet D, Priester L. Grain boundary plane and intergranular segregation in nickel-sulfur system [J]. Scr. Metall., 1987, 21: 475
doi: 10.1016/0036-9748(87)90184-0
9 Janssens K G F, Olmsted D, Holm E A, et al. Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
pmid: 16400330
10 Du A H, Wang W G, Gu X F, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy [J]. J. Mater. Sci., 2021, 56: 781
doi: 10.1007/s10853-020-05239-5
11 Rohrer G S, Saylor D M, El Dasher B, et al. The distribution of internal interfaces in polycrystals [J]. Int. J. Mater. Res, 2004, 95: 197
12 Frank C. Orientation mapping: 1987 MRS fall meeting von Hippel award lecture [J]. MRS Bull., 1988, 13: 24
13 Saylor D M, El-Dasher B S, Adams B L, et al. Measuring the five-parameter grain-boundary distribution from observations of planar sections [J]. Metall. Mater. Trans., 2004, 35A: 1981
14 Randle V, Rohrer G S, Hu Y. Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing [J]. Scr. Mater., 2008, 58: 183
doi: 10.1016/j.scriptamat.2007.09.044
15 Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes [J]. Acta Metall., 1989, 37: 1983
doi: 10.1016/0001-6160(89)90082-5
16 Yang X M, Wang W G, Gu X F. The near singular boundaries in BCC iron [J]. Philos. Mag., 2022, 102: 440
doi: 10.1080/14786435.2021.2004327
17 Wang W G, Du A H, Yang X M, et al. Quantitative determination of grain boundary inter-connections [P]. Chin Pat, CN202011173146.8, 2021
17 王卫国, 杜阿华, 杨先明 等. 晶界界面匹配定量表征方法 [P]. 中国专利, CN202011173146.8, 2021)
18 Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data [J]. J. Microsc., 2002, 205: 245
doi: 10.1046/j.1365-2818.2002.00992.x
19 Gottstein G, Shvindlerman L S, Zhao B. Thermodynamics and kinetics of grain boundary triple junctions in metals: Recent developments [J]. Scr. Mater., 2010, 62: 914
doi: 10.1016/j.scriptamat.2010.03.017
20 Mackenzie J K. Second paper on statistics associated with the random disorientation of cubes [J]. Biometrika, 1958, 45: 229
doi: 10.1093/biomet/45.1-2.229
21 Wang W G, Lin C, Li G H, et al. Preferred orientation of grain boundary plane in recrystallized high purity aluminum [J]. Sci. Sin. Technol., 2014, 44: 1295
doi: 10.1360/N092014-00237
21 王卫国, 林 琛, 李广慧 等. 高纯铝再结晶晶界面的择尤取向 [J]. 中国科学: 技术科学, 2014, 44: 1295
22 Randle V, Davies P, Hulm B. Grain-boundary plane reorientation in copper [J]. Philos. Mag., 1999, 79A: 305
23 Bai X M, Zhang Y F, Tonks M R. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations [J]. Acta Mater., 2015, 85: 95
doi: 10.1016/j.actamat.2014.11.019
24 Poulsen S O, Lauridsen E M, Lyckegaard A, et al. In situ measurements of growth rates and grain-averaged activation energies of individual grains during recrystallization of 50% cold-rolled aluminium [J]. Scr. Mater., 2011, 64: 1003
doi: 10.1016/j.scriptamat.2011.01.046
25 Zhang L C, Gu Y J, Xiang Y. Energy of low angle grain boundaries based on continuum dislocation structure [J]. Acta Mater., 2017, 126: 11
doi: 10.1016/j.actamat.2016.12.035
26 Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20: 1
doi: 10.1080/10408439508243544
27 Yu Y N. Principles of Metallography [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 956
27 余永宁. 金属学原理 [J]. 第 2版. 北京: 冶金工业出版社, 2013: 956
28 Li J C M. Disclination model of high angle grain boundaries [J]. Surf. Sci., 1972, 31: 12
doi: 10.1016/0039-6028(72)90251-8
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[3] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[4] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[5] 陈吉湘,王卫国,林燕,林琛,王乾廷,戴品强. 等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*[J]. 金属学报, 2016, 52(4): 473-483.
[6] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[7] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[8] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[9] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[10] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[11] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[12] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[13] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[14] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[15] 韩清超; 宋晓艳; 李凌梅; 刘雪梅 . 基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J]. 金属学报, 2008, 44(4): 495-500 .