|
|
高温合金锻件残余应力量化表征及控制技术研究进展 |
毕中南1,2( ), 秦海龙1,2, 刘沛2, 史松宜2, 谢锦丽1,2, 张继1,2 |
1钢铁研究总院 高温合金新材料北京市重点实验室 北京 100081 2北京钢研高纳科技股份有限公司 北京 100081 |
|
Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings |
BI Zhongnan1,2( ), QIN Hailong1,2, LIU Pei2, SHI Songyi2, XIE Jinli1,2, ZHANG Ji1,2 |
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co., Ltd., Beijing 100081, China |
引用本文:
毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
Zhongnan BI,
Hailong QIN,
Pei LIU,
Songyi SHI,
Jinli XIE,
Ji ZHANG.
Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. Acta Metall Sin, 2023, 59(9): 1144-1158.
1 |
Zhong Z Y. Preword of special issue for superalloys [J]. Acta Metall. Sin., 2019, 55: 1065
|
1 |
仲增墉. 高温合金专刊前言 [J]. 金属学报, 2019, 55: 1065
|
2 |
Chen G L. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 1988: 1
|
2 |
陈国良. 高温合金学 [M]. 北京: 冶金工业出版社, 1988: 1
|
3 |
Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
|
3 |
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
|
4 |
Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
4 |
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
|
5 |
Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
|
6 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
|
7 |
Dye D, Conlon K T, Reed R C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703
|
8 |
Withers P J, Bhadeshia H K D H. Residual stress. Part 2 - Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
doi: 10.1179/026708301101510087
|
9 |
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ'' precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
|
10 |
Ghasri-Khouzani M, Peng H, Rogge R, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions [J]. Mater. Sci. Eng., 2017, A707: 689
|
11 |
Masoudi S, Amirian G, Saeedi E, et al. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts [J]. J. Mater. Eng. Perform., 2015, 24: 3933
doi: 10.1007/s11665-015-1695-7
|
12 |
Krempaszky C, Werner E A, Stockinger M. Measurement of marcoscopic residual stress and resulting distortion during machining [J]. Mater. Sci. Technol., 2005, 4: 109
|
13 |
Shen G S, Cooper N, Ottow N, et al. Integration and automation of residual stress and service stress modeling for superalloy component design [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 129
|
14 |
Ma K, Goetz R, Srivatsa S K. Modeling of residual stress and machining distortion in aerospace components (PREPRINT) [R]. AFRL-RX-WP-TP-2010-4152, March, 2010
|
15 |
Withers P J, Bhadeshia H K D H. Residual stress. Part 1 - Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
doi: 10.1179/026708301101509980
|
16 |
Rolph J, Preuss M, Iqbal N, et al. Residual stress evolution during manufacture of aerospace forgings [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 881
|
17 |
Xu P G, Tomota Y. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681
|
17 |
徐平光, 友田阳. 基于原位中子衍射材料表征技术的进展 [J]. 金属学报, 2006, 42: 681
|
18 |
Dong P, Wang H, Li J, et al. Residual stress in welded beryllium ring by neutron diffraction and finite element modeling [J]. Atom. Energy Sci. Technol., 2015, 49: 2255
|
18 |
董 平, 王 虹, 李 建 等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255
|
19 |
Collins D M, D'Souza N, Panwisawas C. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
doi: 10.1016/j.scriptamat.2017.01.002
|
20 |
Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445
doi: 10.1080/00018738500101791
|
21 |
Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst. 2006, 39: 812
doi: 10.1107/S0021889806042245
|
22 |
Mo F J, Sun G A, Jian L, et al. Recent progress of residual stress distribution and structural evolution in materials and components by neutron diffraction measurement at RSND [J]. Quant. Beam Sci., 2018, 2: 15
|
23 |
Brown D W, Sisneros T A, Clausen B, et al. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures [J]. Acta Mater., 2009, 57: 972
doi: 10.1016/j.actamat.2008.09.044
|
24 |
Zhang Z W, Feng Y F, Tan Q, et al. Residual stress distribution in Ni-based superalloy turbine discs during fabrication evaluated by neutron/X-ray diffraction measurement and thermomechanical simulation [J]. Mater. Des., 2019, 166: 107603
doi: 10.1016/j.matdes.2019.107603
|
25 |
Ma S, Brown D, Bourke M A M, et al. Microstrain evolution during creep of a high volume fraction superalloy [J]. Mater. Sci. Eng., 2005, A399: 141
|
26 |
Dye D, Stone H J, Reed R C. Intergranular and interphase microstresses [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 31
doi: 10.1016/S1359-0286(00)00019-X
|
27 |
Ma S, Seetharaman V, Majumdar B S. CRSS of γ/γ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900oC [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
|
28 |
Jaladurgam N R, Li H J, Kelleher J, et al. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction [J]. Acta Mater., 2020, 183: 182
doi: 10.1016/j.actamat.2019.11.003
|
29 |
da Fonseca J Q, Oliver E C, Bate P S, et al. Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes [J]. Mater. Sci. Eng., 2006, A437: 26
|
30 |
Pommier H, Busso E P, Morgeneyer T F, et al. Intergranular damage during stress relaxation in AISI 316L-type austenitic stainless steels: Effect of carbon, nitrogen and phosphorus contents [J]. Acta Mater., 2016, 103: 893
doi: 10.1016/j.actamat.2015.11.004
|
31 |
Wagner J N, Hofmann M, Wimpory R, et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271
|
32 |
Withers P J. Mapping residual and internal stress in materials by neutron diffraction [J]. Compt. Rendus Phys., 2007, 8: 806
|
33 |
Liu X L, Luzin V, Qin H L, et al. Mapping of three-dimensional residual stresses by neutron diffraction in nickel-based superalloy discs prepared under different quenching conditions [J]. Mater. Today Commun., 2022, 32: 103876
|
34 |
Pant P, Proper S, Luzin V, et al. Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses [J]. Addit. Manuf., 2020, 36: 101501
|
35 |
Rolph J, Iqbal N, Hoffman M, et al. The effect of d0 reference value on a neutron diffraction study of residual stress in a γ/γ' nickel-base superalloy [J]. J. Strain Anal. Eng. Des., 2013, 48: 219
doi: 10.1177/0309324713486273
|
36 |
Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
|
37 |
Xu C G, Li H X, Wang J F, et al. Ultrasonic shear and longitudinal wave testing method of residual stress [J]. Acta Acust., 2017, 42: 195
|
37 |
徐春广, 李焕新, 王俊峰 等. 残余应力的超声横纵波检测方法 [J]. 声学学报, 2017, 42: 195
|
38 |
Tai W B. Ultrasonic residual stress detection of GH4169 alloy ring forgings [D]. Nanchang: Nanchang Hangkong University, 2019
|
38 |
邰文彬. GH4169环锻件超声残余应力检测 [D]. 南昌: 南昌航空大学, 2019
|
39 |
Prime M B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut [J]. J. Eng. Mater. Technol., 2001, 123: 162
doi: 10.1115/1.1345526
|
40 |
Pagliaro P, Prime M B, Swenson H, et al. Measuring multiple residual-stress components using the contour method and multiple cuts [J]. Exp. Mech., 2010, 50: 187
doi: 10.1007/s11340-009-9280-3
|
41 |
Zhongguancun Material Testing Technology Alliance. T/CSTM 00347—2020 Metallic materials determination of disk/ring forgings residual stress contour method[S]. Beijing, 2020
|
41 |
中关村材料试验技术联盟. T/CSTM 00347—2020 金属材料 盘/环形锻件残余应力测定 轮廓法[S]. 北京, 2020
|
42 |
Hosseinzadeh F, Bouchard P J. Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut [J]. Exp. Mech., 2013, 53: 171
doi: 10.1007/s11340-012-9627-z
|
43 |
Winiarski B, Withers P J. Micron-scale residual stress measurement by micro-hole drilling and digital image correlation [J]. Exp. Mech., 2012, 52: 417
doi: 10.1007/s11340-011-9502-3
|
44 |
Uzun F, Korsunsky A M. The use of eigenstrain theory and fuzzy techniques for intelligent modeling of residual stress and creep relaxation in welded superalloys [J]. Mater. Today: Proc., 2020, 33: 1880
|
45 |
Lin Y C, Wen D X, Deng J, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
doi: 10.1016/j.matdes.2014.02.041
|
46 |
Cheong K S, Busso E P. Discrete dislocation density modelling of single phase FCC polycrystal aggregates [J]. Acta Mater., 2004, 52: 5665
doi: 10.1016/j.actamat.2004.08.044
|
47 |
Hao S, Liu W K, Moran B, et al. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels [J]. Comput. Methods Appl. Mech. Eng., 2004, 193: 1865
doi: 10.1016/j.cma.2003.12.026
|
48 |
Jang D P, Fazily P, Yoon J W. Machine learning-based constitutive model for J2-plasticity [J]. Int. J. Plast., 2021, 138: 102919
doi: 10.1016/j.ijplas.2020.102919
|
49 |
Song R H, Qin H L, Bi Z N, et al. Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy [J]. Eng. Comput., 2021, 38: 19
doi: 10.1108/EC-01-2020-0006
|
50 |
Song R H, Qin H L, Li D F, et al. An experimental and numerical study of quenching-induced residual stresses under the effect of dynamic strain aging in an IN718 superalloy disc [J]. J. Eng. Mater. Technol., 2022, 144: 011002
|
51 |
Yang Y, Jiang Y M, Liu L L, et al. Numerical simulation of thermal stress fields and crack in casting solidification process [J]. Foundry Technol., 2000, (2): 36
|
51 |
杨 屹, 蒋玉明, 刘力菱 等. 铸件凝固过程中热应力场及热裂的数值模拟研究分析 [J]. 铸造技术, 2000, (2): 36
|
52 |
Zhong Z Y, Zhuang J Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15(7): 1
|
52 |
仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15(7): 1
|
53 |
Mo F J, Wu E D, Zhang C S, et al. Correlation between the microstructural defects and residual stress in a single crystal nickel-based superalloy during different creep stages [J]. Met. Mater. Int., 2018, 24: 1002
doi: 10.1007/s12540-018-0106-7
|
54 |
Farhangi H, Norouzi S, Nili-Ahmadabadi M. Effects of casting process variables on the residual stress in Ni-base superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 209
doi: 10.1016/j.jmatprotec.2004.04.199
|
55 |
Ma Y J, Zhang Y D, Zhang H W, et al. Residual stress analysis of the multi-stage forging process of a nickel-based superalloy turbine disc [J]. Proc. Inst. Mech. Eng., 2013, 227G: 213
|
56 |
Geng L, Na Y S, Park N K. Continuous cooling transformation behavior of alloy 718 [J]. Mater. Lett., 1997, 30: 401
doi: 10.1016/S0167-577X(96)00225-X
|
57 |
Karadge M, Grant B, Withers P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds [J]. Metall. Mater. Trans., 2011, 42A: 2301
|
58 |
Foss B J, Gray S, Hardy M C, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
doi: 10.1016/j.actamat.2013.01.031
|
59 |
Longuet A, Dumont C, Georges E. Advanced modeling tools for processing and lifing of aeroengine components [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 3
|
60 |
Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
doi: 10.1016/j.matdes.2016.07.078
|
61 |
Rolph J, Evans A, Paradowska A, et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. Compt. Rendus Phys., 2012, 13: 307
|
62 |
Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
62 |
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
63 |
Chaturvedi M C, Han Y. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7
doi: 10.1016/0025-5416(87)90264-3
|
64 |
Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289
|
65 |
Dahan Y, Nouveau S, Georges E, et al. Residual stresses in Inconel 718 engine disks [A]. MATEC Web Conference [C]. Paris, France: EDP science, 2014, 14: 10003
|
66 |
Soori M, Arezoo B. A review in machining-induced residual stress [J]. J. New Technol. Mater., 2022, 12: 64
|
67 |
Li Z X, Shu X D. Residual stress analysis of multi-pass cold spinning process [J]. Chin. J. Aeronaut., 2022, 35: 259
doi: 10.1016/j.cja.2021.07.004
|
68 |
Ulutan D, Arisoy Y M, Özel T, et al. Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function [J]. Procedia CIRP, 2014, 13: 365
doi: 10.1016/j.procir.2014.04.062
|
69 |
Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
|
70 |
Liu M, Zheng Q, Wang X, et al. Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique [J]. Mech. Mater., 2022, 164: 104143
doi: 10.1016/j.mechmat.2021.104143
|
71 |
Zhou W F, Ren X D, Ren Y P, et al. Laser shock processing on Ni-based superalloy K417 and its effect on thermal relaxation of residual stress [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 675
doi: 10.1007/s00170-016-8796-9
|
72 |
Yu L, Cao R. Welding crack of Ni-based alloys: A review [J]. Acta Metall. Sin., 2021, 57: 16
doi: 10.11900/0412.1961.2020.00200
|
72 |
余 磊, 曹 睿. 镍基合金焊接裂纹研究现状 [J]. 金属学报, 2021, 57: 16
|
73 |
Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part II. Residual stress characterization [J]. Metall. Mater. Trans., 2002, 33A: 3227
|
74 |
Iqbal N, Rolph J, Moat R, et al. A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4056
|
75 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
75 |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
76 |
Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
|
77 |
Wang D, Huang J H, Tan C L, et al. Review on effects of cyclic thermal input on microstructure and property of materials in laser additive manufacturing [J]. Acta Metall. Sin., 2022, 58: 1221
doi: 10.11900/0412.1961.2021.00310
|
77 |
王 迪, 黄锦辉, 谭超林 等. 激光增材制造过程中循环热输入对组织和性能的影响 [J]. 金属学报, 2022, 58: 1221
|
78 |
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
|
79 |
Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Mater. Sci. Eng., 2018, A724: 357
|
80 |
Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert's design [J]. Rapid Prototyp. J., 2017, 23: 881
doi: 10.1108/RPJ-04-2016-0063
|
81 |
Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019: 174: 107793
doi: 10.1016/j.matdes.2019.107793
|
82 |
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
|
82 |
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
|
83 |
Rauer G, Kühhorn A, Springmann M. Residual stress modelling and inverse heat transfer coefficients estimation of a nickel-based superalloy disc forging [A]. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition [C]. Düsseldorf: ASME, 2014: 1
|
84 |
Wong T, Venkatesh V, Turner T J. Data infrastructure developed for PW-8: Nickel base superalloy residual stress foundational engineering problem [A]. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) [C]. Cham: Springer, 2015: 247
|
85 |
Bi Z N, Tang C, Qu J L, et al. Residual stress control for superalloys disk cooling treatments [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Boston: John Wiley & Sons, Inc., 2014: 787
|
86 |
Zhu J J, Yuan W H. Effect of pre-stretching on residual stresses and microstructures of Inconel 718 superalloy [J]. Metals, 2021, 11: 614
doi: 10.3390/met11040614
|
87 |
Qin H L, Bi Z N, Zhang R Y, et al. Stress-induced variant selection of γ″ phase in Inconel 718 during service: Mechanism and effects on mechanical behavior [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 713
|
88 |
Zhang R Y, Qin H L, Bi Z N, et al. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy [J]. J. Mater. Sci. Technol., 2022, 126: 169
doi: 10.1016/j.jmst.2022.03.018
|
89 |
Rao A, Bouchard P J, Northover S M, et al. Anelasticity in austenitic stainless steel [J]. Acta Mater., 2012, 60: 6851
doi: 10.1016/j.actamat.2012.08.060
|
90 |
Wang R Q, Li D, Hu D Y, et al. Effects of heat-treatment residual stress on low cycle fatigue life of a turbine disk in PM superalloy [A]. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition [C]. Montreal: ASME, 2015: 1
|
91 |
Fan M L, Chen C Y, Xuan H J, et al. Effect of residual stress induced by different cooling methods in heat treatment on the fatigue crack propagation behaviour of GH4169 disc [J]. Materials, 2022, 15: 5228
doi: 10.3390/ma15155228
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|