Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1189-1198    DOI: 10.11900/0412.1961.2021.00084
  研究论文 本期目录 | 过刊浏览 |
Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制
陈继林1,2,3(), 冯光宏1, 马洪磊2, 杨栋2, 刘维2
1.钢铁研究总院 冶金工艺研究所 北京 100081
2.邢台钢铁有限责任公司 邢台 054027
3.河北省线材工程技术研究中心 邢台 054027
Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel
CHEN Jilin1,2,3(), FENG Guanghong1, MA Honglei2, YANG Dong2, LIU Wei2
1.Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2.Xingtai Iron and Steel Co., Ltd., Xingtai 054027, China
3.Hebei Engineering Research Center for Wire Rod, Xingtai 054027, China
引用本文:

陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
Jilin CHEN, Guanghong FENG, Honglei MA, Dong YANG, Wei LIU. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. Acta Metall Sin, 2022, 58(9): 1189-1198.

全文: PDF(3959 KB)   HTML
摘要: 

采用OM、SEM、TEM、拉伸实验和硬度测试等方法,对Cr-Mo微合金化冷镦钢在不同控轧控冷(TMCP)工艺下的组织与力学性能进行了表征和测试,并分析了强化机制。结果表明,TMCP工艺参数对Cr-Mo微合金化冷镦钢的组织与力学性能有显著影响,随着终轧温度的升高及冷速的增加,钢中铁素体及珠光体的复相组织逐渐向贝氏体铁素体转变,位错密度逐渐增加,抗拉强度呈现单调上升的规律,而延伸率呈起伏趋势。在终轧温度为935℃时,显微组织主要为均匀分布的短棒状和粒状贝氏体相,其间存在位错缠结,该工艺下具有最佳的强韧性匹配,其抗拉强度和延伸率分别达到了925 MPa和20%,距淬火端部7 mm (J7)处的硬度为53.1 HRC。终轧温度为900℃时,细晶强化是最主要的强化机制,占总强度的31%~36%;终轧温度在935℃以上时,位错强化为主要强化机制,占总强度的35%~38%。淬透性结果表明,Cr-Mo微合金化冷镦钢的淬透性不受显微组织及力学性能的影响,保持着良好的淬火性能,同时建立了Cr-Mo微合金钢的端淬曲线的模型,实现了淬透性的预测。

关键词 Cr-Mo微合金化冷镦钢终轧温度强化机制    
Abstract

Lightweight and safety of automobiles is the development trend of high-strength automobile fasteners, which is conducive to saving resources and protecting the environment. High-strength fasteners connect parts of engine, and their strength affects the overall life of the engine, thereby affecting the safety performance of the vehicle. Presently, high-strength fastener steels for cars are mainly 35CrMo, and the fastener strength reaches 10.9/12.9 level, which must fulfill sufficient delayed fracture and fatigue properties. Therefore, it is important to develop cold heading steel with high fatigue and strong plasticity matching. In this study, the microstructure, mechanical properties, and strengthening mechanism of Cr-Mo microalloyed cold heading steel, under different thermomechanical control processes (TMCPs), were investigated using OM, SEM, and TEM. The results show that the TMCP parameters affect the structure and mechanical properties of the experimental steel. With an increase in the finish rolling temperature and acceleration of the cooling rate, the ferrite-pearlite composite structure in the steel gradually changes to bainitic, dislocation density gradually increases, tensile strength monotonously increases, and elongation fluctuates. When the finish rolling temperature is 935oC, the microstructure is mainly uniformly distributed bainite phase, which is in the form of short rod and granular, and there is dislocation entanglement. The experimental results show that this process has the best strength and toughness matching. Its tensile strength and elongation reach 925 MPa and 20%, respectively, and the hardness at 7 mm from the quenched end (J7) is 53.1 HRC. When the finish rolling temperature is 900oC, grain refinement strengthening is the main strengthening mechanism, accounting for 31%-36% of the yield strength; when the finish rolling temperature is more than 935oC, dislocation strengthening is the main strengthening mechanism, accounting for the total strength of 35%-38%. The hardenability results show that the hardenability of the experimental steel is unaffected by the microstructure and mechanical properties, and it maintains high-quality hardenability. In addition, a model of the end quenching curve of the Cr-Mo microalloyed steel is established to predict hardenability.

Key wordsCr-Mo microalloying    cold heading steel    finish rolling temperature    strengthening mechanism
收稿日期: 2021-02-26     
ZTFLH:  TG142.1  
作者简介: 陈继林,男,1986年生,高级工程师,博士
ProcessFinishing temperature / oCSpinning temperature / oCHeat coverBlowerCooling rate / (m·s-1)
1900820CloseClose0.3
2900860CloseClose0.4
3935900CloseClose0.5
4970950CloseClose0.7
表1  Cr-Mo微合金钢的轧制工艺
图1  Cr-Mo微合金钢在不同工艺下显微组织的OM像和SEM像
图2  Cr-Mo微合金钢在不同工艺下显微组织的TEM像
图3  Cr-Mo微合金钢中的位错及孪晶
图4  Cr-Mo微合金钢室温拉伸应力-应变曲线
ProcessTensile strengthElongationReduction of
MPa%area / %
171326.562
284518.551
392520.056
497914.547
表2  Cr-Mo微合金钢室温拉伸力学性能
图5  Cr-Mo微合金钢在工艺2下室温拉伸断口形貌的SEM像
图6  Cr-Mo微合金钢的末端淬透性曲线
图7  Cr-Mo微合金钢距离淬火端7 mm处显微组织的OM像
Processσ0σsσGσDisσy
14813415386421
248134138113433
348134130169481
448134126191499
表3  Cr-Mo微合金钢的屈服强度(σy)及其分量的计算值 (MPa)
1 Hui W J, Zhang Y J, Zhao X L, et al. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts [J]. Mater. Sci. Eng., 2016, A662: 528
2 Zheng D S, Liu D, Luo D, et al. Effect of tempering temperature on microstructure and mechanical properties of ultra-high strength steel [J]. Trans. Mater. Heat Treat., 2020, 41(12): 90
2 郑东升, 刘 丹, 罗 登 等. 回火温度对超高强钢微观组织及力学性能的影响 [J]. 材料热处理学报, 2020, 41(12): 90
3 Ji C, Wang L, Zhu M Y. Effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel [J]. J. Iron Steel Res. Int., 2015, 22: 1031
doi: 10.1016/S1006-706X(15)30108-4
4 Dong H, Lian X T, Hu C D, et al. High performance steels: The scenario of theory and technology [J]. Acta Metall. Sin., 2020, 56: 558
4 董 瀚, 廉心桐, 胡春东 等. 钢的高性能化理论与技术进展 [J]. 金属学报, 2020, 56: 558
5 Hu C D, Meng L, Dong H. Research and development of ultra-high strength steels [J]. Trans. Mater. Heat Treat., 2016, 37(11): 178
5 胡春东, 孟 利, 董 瀚. 超高强度钢的研究进展 [J]. 材料热处理学报, 2016, 37(11): 178
6 Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
6 惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
7 Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body [J]. J. Mech. Eng., 2016, 52(24): 1
7 李永兵, 马运五, 楼 铭 等. 轻量化多材料汽车车身连接技术进展 [J]. 机械工程学报, 2016, 52(24): 1
doi: 10.3901/JME.2016.24.001
8 Sun H R. Review on the fastener steels for automobiles [J]. China Metall., 2011, 21(7): 7
8 孙浩然. 汽车紧固件用钢的发展动向 [J]. 中国冶金, 2011, 21(7): 7
9 Zhang H Y, Hui W J, Dong H, et al. Simplified spheroidizing annealing process of 42CrMo steel [J]. J. Iron Steel Res., 2007, 19(3): 62
9 张怀宇, 惠卫军, 董 瀚 等. 简化42CrMo钢球化退火工艺的研究 [J]. 钢铁研究学报, 2007, 19(3): 62
10 Wang Q, Zhu J L. Certain new techniques of wire production development in recent years [J]. China Metall., 2014, 24(12): 1
10 王 强, 朱君龙. 线材生产发展的一些新技术 [J]. 中国冶金, 2014, 24(12): 1
11 Ruan S P, Wang L J, Chen J L, et al. Effect of control-rolling-cooling process on structure and properties of steel SCM435 rod coil [J]. Spec. Steel, 2016, 37(5): 45
11 阮士朋, 王利军, 陈继林 等. 控轧控冷工艺对SCM435钢盘条组织和性能的影响 [J]. 特殊钢, 2016, 37(5): 45
12 Parthiban R, Chowdhury S G, Harikumar K C, et al. Evolution of microstructure and its influence on tensile properties in thermo-mechanically controlled processed (TMCP) quench and partition (Q & P) steel [J]. Mater. Sci. Eng., 2017, A705: 376
13 Kitade A, Kawabata T, Kimura S, et al. Clarification of micromechanism on brittle fracture initiation condition of TMCP Steel with MA as the trigger point [J]. Procedia Struct. Integr., 2018, 13: 1845
doi: 10.1016/j.prostr.2018.12.330
14 Elhigazi F, Artemev A. The influence of carbide formation in ferrite on the bainitic type transformation [J]. Comput. Mater. Sci., 2021, 186: 109961
doi: 10.1016/j.commatsci.2020.109961
15 Elhigazi F, Artemev A. The interaction between the displacive transformation and the diffusion process in the bainitic type transformation [J]. Comput. Mater. Sci., 2019, 169: 109079
doi: 10.1016/j.commatsci.2019.109079
16 Ranjan R, Singh S B. Isothermal bainite transformation in low-alloy steels: Mechanism of transformation [J]. Acta Mater., 2021, 202: 302
doi: 10.1016/j.actamat.2020.10.048
17 Chen G H, Xu Y W, Liu M, et al. Effect of high-temperature deformation and undercooling on bainite transformation of a medium-carbon bainitic steel [J]. J. Iron Steel Res., 2020, 32: 984
17 陈光辉, 徐耀文, 刘 曼 等. 高温变形和过冷度对中碳钢贝氏体相变的影响 [J]. 钢铁研究学报, 2020, 32: 984
18 Ravi A M, Kumar B, Herbig M, et al. Impact of austenite grain boundaries and ferrite nucleation on bainite formation in steels [J]. Acta Mater., 2020, 188: 424
doi: 10.1016/j.actamat.2020.01.065
19 Ji Y P, Liu Z C, Ren H P. Twin crystal substructure of martensite in steel [J]. Trans. Mater. Heat Treat., 2013, 34(4): 162
19 计云萍, 刘宗昌, 任慧平. 钢中马氏体的孪晶亚结构 [J]. 材料热处理学报, 2013, 34(4): 162
20 Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 57
20 雍岐龙, 马鸣图, 吴宝榕. 微合金钢——物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 57
21 Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishing Ltd., 1978: 63
22 Kelly A. Strengthening Methods in Crystals [M]. London: Applied Science Publishers Ltd., 1971: 137
23 Li Z D, Yang Z G, Liu Z Y, et al. Effect of hot deformation on proeutectoid ferrite ledge growth from boundary of undercooled austenite [J]. J. Iron Steel Res. Int., 2007, 14: 306
doi: 10.1016/S1006-706X(08)60100-4
24 Zheng C S, Li L F, Yang W Y, et al. Microstructure evolution and mechanical properties of eutectoid steel with ultrafine or fine (ferrite+cementite) structure [J]. Mater. Sci. Eng., 2014, A599: 16
25 Yu D G. Theory and Design of Steel Strengthening and Toughening [M]. Shanghai: Shanghai Jiaotong University Press, 1990: 114
25 俞德刚. 钢的强韧化理论与设计 [M]. 上海: 上海交通大学出版社, 1990: 114
26 Park S H, Hong S G, Chun Y S, et al. High-cycle fatigue characteristics of non-heat-treated steels developed for bolt applications [J]. Mater. Sci. Eng., 2012, A550: 118
27 Jin M, Lian J S, Jiang Z H. A new mathematical model describing hardenability of steels [J]. Acta Metall. Sin., 2006, 42: 265
27 金 满, 连建设, 江中浩. 描述钢淬透性的一个新数学模型 [J]. 金属学报, 2006, 42: 265
28 Huang R, Zhao S X, Huang Z Z. Effects of boron on hardenability for Cr-Mn-Mo quenched-tempered steel containing boron [J]. J. Iron Steel Res., 2021, 33: 437
28 黄 瑞, 赵四新, 黄宗泽. 硼对铬锰钼系含硼调质钢淬透性的影响 [J]. 钢铁研究学报, 2021, 33: 437
29 Wang D C, Wang L J, Guo J C, et al. Effect of alloy elements Mn and Cr on microstructure and properties of SWRCH45K steel [J]. Heat Treat. Met., 2020, 45(8): 82
29 王冬晨, 王利军, 郭俊成 等. 合金元素Mn、Cr对SWRCH45K钢组织和性能的影响 [J]. 金属热处理, 2020, 45(8): 82
30 Ruan S P. Microstructure and properties control of high quality cold heading steel containing boron [D]. Beijing: University of Science and Technology Beijing, 2020
30 阮士朋. 高品质含硼冷镦钢的组织和性能调控 [D]. 北京: 北京科技大学, 2020
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[3] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[4] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[5] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[6] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[7] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[8] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[9] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[10] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[11] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[12] 王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .
[13] 李龙; 丁桦; 杜林秀; 宋红梅; 郑芳 . 仿晶界型铁素体/贝氏体低碳锰钢的组织和力学性能[J]. 金属学报, 2006, 42(11): 1227-1232 .
[14] 姚向东;张静华;张志亚;李英敖;赵乃仁;管恒荣;胡壮麒. 合金元素对一种定向凝固钴基高温合金组织和性能的影响[J]. 金属学报, 1995, 31(7): 320-328.
[15] 蒋晓军;李依依;桂全红;马禄铭;梁国军;师昌绪. Sc对Al-Li-Cu-Mg-Zr合金组织与性能的影响[J]. 金属学报, 1994, 30(8): 355-361.