Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 567-580    DOI: 10.11900/0412.1961.2022.00062
  研究论文 本期目录 | 过刊浏览 |
基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究
丁宗业, 胡侨丹(), 卢温泉, 李建国
上海交通大学 材料科学与工程学院 上海 200240
In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology
DING Zongye, HU Qiaodan(), LU Wenquan, LI Jianguo
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
Zongye DING, Qiaodan HU, Wenquan LU, Jianguo LI. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. Acta Metall Sin, 2022, 58(4): 567-580.

全文: PDF(5296 KB)   HTML
摘要: 

利用同步辐射X射线二维成像技术对液/固复层界面加热过程中氢气泡的生长、运动行为及形态演变进行了原位表征,研究气泡的形核机理、生长机制与运动特征。结果表明,氢气泡的形核机制主要为非均质形核与双层表面膜演变;成分不均匀与双层膜转变将群体气泡的生长分为2个不同阶段,气泡平均尺寸与时间的变化关系遵循stochastic 随机模型;其生长机制为跳跃合并与熟化吞并机制,伴随着氢气泡形态由球状向椭球状与非规则状转变;氢气泡的运动包含向上迁移与无定向跳跃,在金属间化合物阻碍下氢气泡的生长经历多次跳跃,主要归因于双层表面膜转变为气泡、变形气泡尺寸增加、化合物溶解与化合物的扰动。

关键词 液/固界面非平衡凝固氢气泡同步辐射金属间化合物    
Abstract

Pore defects at the liquid/solid interface contribute to the interfacial bonding quality. Understanding the formation and growth mechanism of pores can help control their size distribution and eliminate their formation. However, the traditional static-research methods limit the in-depth study of the dynamic evolution behavior of bubbles. The growth, motion behavior, and morphological evolution of hydrogen bubbles at the liquid/solid bimetal interface during heating were characterized in situ, using synchrotron radiation X-ray imaging technology, and the bubbles' nucleation, growth mechanisms, and motion characteristics were investigated. The results show that the nucleation mechanism of hydrogen bubbles contains heterogeneous nucleation and bifilms. Bubble growth is divided into two stages: the inhomogeneous composition and bifilm transformation into hydrogen bubbles. The relationship between the bubbles' mean diameter and heating time conform to the stochastic model. The growth mechanism of bubbles exhibits jump merging and annexation behaviors, accompanied by the morphological transformation from spherical to elliptic and irregular shapes. The motion of the hydrogen bubbles includes upward migration and astatic jumping. The bubbles' growth, hindered by intermetallic compounds (IMCs), has experienced several jumps, attributed to the transformation of bifilms into bubbles, increasing bubble size and deformation, IMC dissolution, and IMC disturbance.

Key wordsliquid/solid interface    non-equilibrium solidification    hydrogen bubble    synchrotron radiation    intermetallic compounds
收稿日期: 2022-02-17     
ZTFLH:  TG245  
基金资助:国家自然科学基金项目(51922068);国家自然科学基金项目(51727802);国家自然科学基金项目(51904187);中国博士后科学基金项目(2019M661500)
作者简介: 丁宗业,男,1987年生,博士
图1  Al/Ni液/固界面加热过程中不同阶段氢气泡的实时演变行为
图2  Al/Ni液/固界面加热过程中非均匀熔体不同区域氢气泡的实时生长放大图
图3  氢气泡数量随时间的变化,群体气泡平均尺寸随时间的变化,阶段1及阶段2不同区域气泡的平均尺寸变化
图4  加热过程中单个气泡生长示意图
图5  Al/Ni液/固界面加热过程中Al3Ni金属间化合物溶解与氢气泡生长的实时成像
图6  化合物阻碍下氢气泡数量随时间的变化,群体气泡平均尺寸随时间的变化,及单个气泡的平均尺寸随时间的变化关系
图7  液/固界面加热过程中双层膜演变、Al3Ni化合物阻碍下氢气泡的生长与跳跃行为的实时成像
图8  双层表面膜演变、氢气泡的生长与跳跃的实时成像
图9  熔体/金属间化合物过渡区氢气泡的生长演变与跳跃的实时成像
图10  Al/Ni液/固界面中Al枝晶和金属间化合物为凹槽衬底的氢气泡异质形核示意图
图11  Al/Ni液/固界面第一阶段变形氢气泡迁移合并的实时成像,第二阶段静止吞并行为的实时成像和示意图,及Al/Ni液/固界面氢气泡的合并行为的实时成像
图12  氢气泡尺寸增加发生跳跃行为和化合物溶解导致氢气泡发生跳跃行为的示意图
1 Zhao X, Sun Y, Hou X Y, et al. Effect of orientation deviation on microstructure and mechanical properties of nickel-based single crystal superalloy brazing joints [J]. Acta Metall. Sin., 2020, 56: 171
1 赵 旭, 孙 元, 侯星宇 等. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响 [J]. 金属学报, 2020, 56: 171
2 Liu L H, Che C S, Kong G, et al. Destabilization mechanism of Fe-Al inhibition layer in Zn-0.2%Al hot-dip galvanizing coating and related thermodynamic evaluation [J]. Acta Metall. Sin., 2016, 52: 614
2 刘力恒, 车淳山, 孔 纲 等. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估 [J]. 金属学报, 2016, 52: 614
3 Sadeghian A, Mirsalehi S E, Arhami F, et al. Effect of bonding time on dissimilar transient liquid phase (TLP) bonding of IN939 to IN625 superalloys: Microstructural characterization and mechanical properties [J]. Metall. Mater. Trans., 2021, 52A: 1526
4 Wen F L, Zhao J H, Yuan M W, et al. Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid-liquid compound casting process [J]. J. Magnes. Alloy., 2021, 9: 1382
5 Ding Z Y, Zhang N F, Yu L, et al. Recent progress in metallurgical bonding mechanisms at the liquid/solid interface of dissimilar metals investigated via in situ X-ray imaging technologies [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 145
6 Ding Z Y, Hu Q D, Lu W Q, et al. In situ observation on the formation of intermetallics compounds at the interface of liquid Al/solid Ni [J]. Scr. Mater., 2017, 130: 214
7 Ding Z Y, Hu Q D, Lu W Q, et al. In-situ observation on the diversified morphology and growth behavior of Al3Ni phase at the liquid Al/solid Ni interface [J]. Metall. Mater. Trans., 2018, 49A: 1486
8 Ding Z Y, Hu Q D, Lu W Q, et al. A full view of the interfacial behavior between the liquid Al and solid Ni by synchrotron radiation [J]. Metall. Mater. Trans., 2019, 50A: 300
9 Ding Z Y, Hu Q D, Lu W Q, et al. Continuous morphological transition and its mechanism of Al3Ni phase at the liquid-solid interface during solidification [J]. Metall. Mater. Trans., 2019, 50A: 556
10 Kunwar A. Simulations on the growth of bubbles and interfacial intermetallic compounds in liquid Sn-based soders [D]. Dalian: Dalian University of Technology, 2016
10 Kunwar A. Sn基液态钎焊界面气泡及IMC生长数值模拟研究 [D]. 大连: 大连理工大学, 2016
11 Liu Y. Computer simulation of hydrogen in aluminum [D]. Shanghai: Shanghai Jiao Tong University, 2012
11 柳 洋. 铝中氢行为的计算机模拟研究 [D]. 上海: 上海交通大学, 2012
12 Lee P D, Chirazi A, See D. Modeling microporosity in aluminum-silicon alloys: A review [J]. J. Light Met., 2001, 1: 15
13 Poirier D R, Yeum K, Maples A L. A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys [J]. Metall. Trans., 1987, 18A: 1979
14 Han Q, Viswanathan S. Hydrogen evolution during directional solidification and its effect on porosity formation in aluminum alloys [J]. Metall. Mater. Trans., 2002, 33A: 2067
15 Li K D, Chang E. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: An analytical solution [J]. Acta Mater., 2004, 52: 219
16 Yousefian P, Tiryakioğlu M. Pore formation during solidification of aluminum: Reconciliation of experimental observations, modeling assumptions, and classical nucleation theory [J]. Metall. Mater. Trans., 2018, 49A: 563
17 Atwood R C, Sridhar S, Zhang W, et al. Diffusion-controlled growth of hydrogen pores in aluminium-silicon castings: In situ observation and modelling [J]. Acta Mater., 2000, 48: 405
18 Yin H B, Koster J N. In-situ observed pore formation during solidification of aluminium [J]. ISIJ Int., 2000, 40: 364
19 Zhang Q Y, Sun D K, Pan S Y, et al. Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment [J]. Int. J. Heat Mass Transfer, 2020, 146: 118838
20 Sun S Y, Hu Q D, Lu W Q, et al. In situ observation on bubble behavior of solidifying Al-Ni alloy under the interference of intermetallic compounds [J]. Metall. Mater. Trans., 2018, 49A: 4429
21 Lee P D, Hunt J D. Hydrogen porosity in directional solidified aluminium-copper alloys: In situ observation [J]. Acta Mater., 1997, 45: 4155
22 Zhang S G, Zhang L, Lu W Q, et al. Observation of bubble-involving spontaneous gas dissolution in superheated Al alloy melt [J]. Appl. Phys. Lett., 2013, 103: 164103
23 Lu W Q, Zhang N F, Ding Z Y, et al. Bubble growth, intermetallic compounds dissolution and their interactions during heating of an Al-5wt.%Mn alloy by in-situ synchrotron radiography [J]. J. Alloys Compd., 2020, 822: 153554
24 Lu W Q, Hu Q D, Zhang W, et al. Dynamic behaviors of minor droplets and the role of bubbles in phase-separating Al-Bi immiscible alloy [J]. J. Mol. Liq., 2020, 320: 114478
25 Lu W Q, Zhang N F, Ren N, et al. Bubble-induced formation of new intermetallic compounds in an Al-Mn alloy during heating observed by synchrotron radiography [J]. Materialia, 2021, 15: 100991
26 Campbell J. Entrainment defects [J]. Mater. Sci. Technol., 2006, 22: 127
27 Ding Z Y, Hu Q D, Lu W Q, et al. In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography [J]. J. Mater. Sci. Technol., 2019, 35: 1388
28 Ding Z Y, Hu Q D, Lu W Q, et al. Microstructural evolution and growth behavior of intermetallic compounds at the liquid Al/solid Fe interface by synchrotron X-ray radiography [J]. Mater. Charact., 2018, 136: 157
29 Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. Beijing: Higher Education Press, 2010: 108
29 Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 北京: 高等教育出版社, 2010: 108
30 Lee P D, Hunt J D. Hydrogen porosity in directionally solidified aluminium-copper alloys: A mathematical model [J]. Acta Mater., 2001, 49: 1383
31 Sun Y Z, Li S C, Zhang G Q, et al. Research on absorbing hydrogen special property of liquid state ZL101 Aluminium alloys [J]. Acta Metall. Sin., 1999, 35: 939
31 孙业赞, 厉松春, 张国强 等. 液态ZL101 Al合金吸氢特性的研究 [J]. 金属学报, 1999, 35: 939
32 Markworth A J. The transverse thermal conductivity of a unidirectional fibre composite with fibre-matrix debonding: A calculation based on effective-medium theory [J]. J. Mater. Sci. Lett., 1993, 12: 1487
33 Tiryakioğlu M. On the heterogeneous nucleation pressure for hydrogen pores in liquid aluminium [J]. Int. J. Cast Met. Res., 2020, 33: 153
34 Ding Z Y, Hu Q D, Yang F, et al. A new sight of the growth characteristics of solidified Al3Ni at the liquid-solid interface by synchrotron radiography and 3D tomography [J]. Metall. Mater. Trans., 2020, 51A: 2689
35 Ding Z Y, Hu Q D, Lu W Q, et al. Intergrowth mechanism and morphology prediction of faceted Al3Ni formed during solidification by a spatial geometric model [J]. J. Mater. Sci. Technol., 2020, 54: 40
36 Takemura F, Yabe A. Gas dissolution process of spherical rising gas bubbles [J]. Chem. Eng. Sci,. 1998, 53: 2691
[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[6] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[7] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[8] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[12] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[13] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[14] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.