|
|
钛合金及其扩散焊疲劳特性研究进展 |
李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军( ) |
上海交通大学 材料科学与工程学院 塑性成形技术与装备研究院 上海 200030 |
|
Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics |
LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun( ) |
Institute of Forming Technology & Equipment, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China |
引用本文:
李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
Xifeng LI,
Tianle LI,
Dayong AN,
Huiping WU,
Jieshi CHEN,
Jun CHEN.
Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. Acta Metall Sin, 2022, 58(4): 473-485.
1 |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
|
2 |
Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
|
3 |
Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
|
4 |
Guo L G, Fan X G, Yu G F, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review [J]. Chin. J. Aeronaut., 2016, 29: 30
|
5 |
Gangwar K, Ramulu M. Friction stir welding of titanium alloys: A review [J]. Mater. Des., 2018, 141: 230
|
6 |
Schijve J. Fatigue damage in aircraft structures, not wanted, but tolerated? [J]. Int. J. Fatigue, 2009, 31: 998
|
7 |
Qian B Y, Li L, Sun J F, et al. Effects of annealing on the microstructures and mechanical properties of cold-rolled TB8 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2816
|
8 |
Mantri S A, Choudhuri D, Behera A, et al. Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S [J]. Metall. Mater. Trans., 2015, 46A: 2803
|
9 |
Tan C S, Li X L, Sun Q Y, et al. Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy [J]. Int. J. Fatigue, 2015, 75: 1
|
10 |
Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Volume IV Titanium Alloys and Copper Alloys [M]. 2nd Ed., Beijing: Standards Press of China, 2002: 5
|
10 |
《中国航空材料手册》编辑委员会. 中国航空材料手册-第四卷-钛合金 铜合金 [M]. 第2版, 北京: 中国标准出版社, 2002: 5
|
11 |
Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications [M]. Beijing: Aviation industry press, 2013: 77
|
11 |
朱知寿. 新型航空高性能钛合金材料技术研究与发展 [M].北京: 航空工业出版社, 2013: 77
|
12 |
Li J S, Tang B, Fan J K, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy [J]. Acta Metall. Sin., 2021, 57: 1438
|
12 |
李金山, 唐 斌, 樊江昆 等. 高强亚稳β钛合金变形机制及其组织调控方法 [J]. 金属学报, 2021, 57: 1438
|
13 |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
|
13 |
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
14 |
Zhu Z S, Ma S J, Wang X N, et al. Study of fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy [J]. Titan. Ind. Progr., 2005, 22(6): 10
|
14 |
朱知寿, 马少俊, 王新南 等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究 [J]. 钛工业进展, 2005, 22(6): 10
|
15 |
Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
|
16 |
Wang G Q. Study of thermomechanical process and electron beam welding properties of titanium alloy Ti-6246 [D]. Shenyang: University of Science and Technology of China, 2016
|
16 |
王国强. Ti-6246钛合金热机械处理及电子束焊接性研究 [D]. 沈阳: 中国科学技术大学, 2016
|
17 |
Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti-6Al-4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment [J]. Mater. Charact., 2019, 156: 109830
|
18 |
Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
|
19 |
Mohandas T, Banerjee D, Kutumbarao V V. Elevated temperature properties of electron beam welds of an α + β titanium alloy [J]. Mater. Sci. Eng., 1999, A269: 217
|
20 |
Fratini L, Micari F, Buffa G, et al. A new fixture for FSW processes of titanium alloys [J]. CIRP Ann., 2010, 59: 271
|
21 |
Kovacevic S, Pan R, Sekulic D P, et al. Interfacial energy as the driving force for diffusion bonding of ceramics [J]. Acta Mater., 2020, 186: 405
|
22 |
Wu H P, Yang W B, Peng H L, et al. Diffusion bonding criterion based on real surface asperities: Modeling and validation [J]. J. Manuf. Processes, 2020, 57: 477
|
23 |
Li X F, Chen X, Li B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment [J]. Mater. Charact., 2019, 157: 109919
|
24 |
Zhu F H, Peng H L, Li X F, et al. Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys [J]. Mater. Des., 2018, 159: 68
|
25 |
Li X, Wang G F, Zhang J X, et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 77
|
26 |
Li X, Wang G F, Gu Y B, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment [J]. Mater. Des., 2018, 157: 351
|
27 |
Feng R, Rao Y, Liu C H, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J]. Nat. Commun., 2021, 12: 3588
|
28 |
Cao Y K, Zeng F P, Liu B, et al. Characterization of fatigue properties of powder metallurgy titanium alloy [J]. Mater. Sci. Eng., 2016, A654: 418
|
29 |
Li X Z. Research on the microstructure and fatigue property of electron beam welding joint in titanium alloy [D] Wuhan: Huazhong University of Science and Technology, 2012
|
29 |
李行志. 钛合金电子束焊接接头显微组织及疲劳性能研究 [D]. 武汉: 华中科技大学, 2012
|
30 |
Bettaieb M B, Lenain A, Habraken A M. Static and fatigue characterization of the Ti5553 titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 401
|
31 |
Gilbert J L, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V [J]. Metall. Mater. Trans., 1993, 24A: 669
|
32 |
Ivanova S G, Biederman R R, Sisson R D Jr. Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue [J]. J. Mater. Eng. Perform., 2002, 11: 226
|
33 |
Oberwinkler B, Lettner A, Eichlseder W. Multiscale fatigue crack observations on Ti-6Al-4V [J]. Int. J. Fatigue, 2011, 33: 710
|
34 |
Meng L, Gao J B, Yue J K, et al. Stress-based fatigue behavior of Ti-6Al-4V alloy with a discontinuous lamellar microstructure fabricated by thermomechanical powder consolidation [J]. Mater. Sci. Eng., 2020, A798: 140085
|
35 |
Man J, Petrenec M, Obrtlík K, et al. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel [J]. Acta Mater., 2004, 52: 5551
|
36 |
Polák J, Man J. Experimental evidence and physical models of fatigue crack initiation [J]. Int. J. Fatigue, 2016, 91: 294
|
37 |
Lam Y C, Lian K S. The effect of residual stress and its redistribution of fatigue crack growth [J]. Theor. Appl. Fract. Mech., 1989, 12: 59
|
38 |
Paris P C, Gomez M P, Anderson W E. A rational analytic theory of fatigue [J]. Trends Eng., 1961, 13: 9
|
39 |
Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures [J]. J. Fluids Eng., 1967, 89: 459
|
40 |
Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [J]. Eff. Environ. Complex Load Hist. Fatigue Life, 1970, 462: 1
|
41 |
Wang H, Zhao Q Y, Xin S W, et al. Fatigue crack propagation behaviors in Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy with STA and BASCA heat treatments [J]. Int. J. Fatigue, 2021, 151: 106348
|
42 |
Guo P, Zhao Y Q, Zeng W D, et al. Effect of microstructure on the fatigue crack propagation behavior of TC4-DT titanium alloy [J]. J. Mater. Eng. Perform., 2015, 24: 1865
|
43 |
Shi X H, Zeng W D, Shi C L, et al. The effects of colony microstructure on the fatigue crack growth behavior for Ti-6A1-2Zr-2Sn-3Mo-1Cr-2Nb titanium alloy [J]. Mater. Sci. Eng., 2015, A621: 252
|
44 |
Yue Y, Dai L Y, Zhong H, et al. Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy [J]. J. Alloys Compd., 2017, 696: 663
|
45 |
Mine Y, Katashima S, Ding R G, et al. Fatigue crack growth behaviour in single-colony lamellar structure of Ti-6Al-4V [J]. Scr. Mater., 2019, 165: 107
|
46 |
Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V [J]. Acta Mater., 2007, 55: 5655
|
47 |
Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
|
48 |
Shi X H, Zeng W D, Shi C L, et al. Study on the fatigue crack growth rates of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure [J]. Mater. Sci. Eng., 2015, A621: 143
|
49 |
Tokaji K, Ogawa T, Ohya K. The effect of grain size on small fatigue crack growth in pure titanium [J]. Int. J. Fatigue, 1994, 16: 571
|
50 |
Verdhan N, Bhende D D, Kapoor R, et al. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy [J]. Int. J. Fatigue, 2015, 74: 46
|
51 |
Hassanipour M, Watanabe S, Hirayama K, et al. Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2019, A766: 138264
|
52 |
Mine Y, Ando S, Takashima K. Crystallographic fatigue crack growth in titanium single crystals [J]. Mater. Sci. Eng., 2011, A528: 7570
|
53 |
Zhang K, Wu X, Davies C H J. Effect of microtexture on short crack propagation in two-phase titanium alloys [J]. Int. J. Fatigue, 2017, 104: 206
|
54 |
Wang X Y, Zhao Y, Wang L B, et al. In-situ SEM investigation and modeling of small crack growth behavior of additively manufactured titanium alloy [J]. Int. J. Fatigue, 2021, 149: 106303
|
55 |
Shi X H. Investigation on the damage tolerace property and high cycle fatigue strength of TC18 titanium alloy with basket-weave microstructure [D]. Xi'an: Northwestern Polytechnical University, 2016
|
55 |
石晓辉. 网篮组织TC18钛合金损伤容限性能及高周疲劳强度研究 [D]. 西安: 西北工业大学, 2016
|
56 |
Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics [J]. Nature, 1990, 347: 455
|
57 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
|
58 |
Huang Y, Zhang H W. The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates [J]. Acta Metall. Mater., 1995, 43: 1523
|
59 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
|
60 |
Dong Y H, He X F, Li Y H. Effect of interface region on fatigue crack growth in diffusion-bonded laminate of Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 117: 63
|
61 |
He X F, Dong Y H, Li Y H, et al. Fatigue crack growth in diffusion-bonded Ti-6Al-4V laminate with unbonded zones [J]. Int. J. Fatigue, 2018, 106: 1
|
62 |
Liu Y, Zhang Y C, Liu S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates [J]. Eng. Fract. Mech., 2016, 163: 176
|
63 |
Junet A, Messager A, Boulnat X, et al. Fabrication of artificial defects to study internal fatigue crack propagation in metals [J]. Scr. Mater., 2019, 171: 87
|
64 |
Adharapurapu R R, Vecchio K S, Jiang F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metall. Mater. Trans., 2005, 36A: 1595
|
65 |
Liao K H, Su C Y, Yu M Y. Interfacial microstructure and mechanical properties of diffusion-bonded W-10 Cu composite/AlN ceramic using Ni-P and Ti interlayers [J]. J. Alloys Compd., 2021, 867: 159050
|
66 |
Eskizeybek V, Avci A, Akdemir A, et al. Fatigue behavior and damage assessment of stainless steel/aluminum composites [J]. J. Eng. Mater. Technol. Trans., 2011, 133: 021016
|
67 |
Li P, Ji X H, Xue K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties [J]. J. Mater. Eng. Perform., 2017, 26: 1839
|
68 |
Zhong Z H, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer [J]. J. Alloys Compd., 2010, 489: 545
|
69 |
Wang X F, Ma M, Liu X B, et al. Interface characteristics in diffusion bonding of a γ-TiAl alloy to Ti-6Al-4V [J]. J. Mater. Sci., 2007, 42: 4004
|
70 |
Sun L X, Li M Q, Li L. Characterization of crystal structure in the bonding interface between TC17 and TC4 alloys [J]. Mater. Charact., 2019, 153: 169
|
71 |
Zhu F H. Study on diffusion bonding mechanism and nondestructive testing method of interface defects of dissimilar titanium based alloys [D]. Shanghai: Shanghai Jiao Tong University, 2020
|
71 |
朱富慧. 异种钛基合金扩散连接机理及界面缺陷无损检测方法研究 [D]. 上海: 上海交通大学, 2020
|
72 |
Jia G P. Study on sperplastic deformation behavior of Ti2AlNb alloy [D]. Shanghai: Shanghai Jiao Tong University, 2019
|
72 |
贾国朋. Ti2AlNb基合金超塑变形行为研究 [D]. 上海: 上海交通大学, 2019
|
73 |
Li T L, Wu H P, Wang B, et al. Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding [J]. Int. J. Fatigue, 2021, 156: 106646
|
74 |
Du Z H, Jiang S S, Zhang K F, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Mater. Des., 2016, 104: 242
|
75 |
Du Z H, Zhang K F. The superplastic forming/diffusion bonding and mechanical property of TA15 alloy for four‐layer hollow structure with squad grid [J]. Int. J. Mater. Form., 2021, 14: 1057
|
76 |
Du Z H, Zhang K F. The hot bending and diffusion bonding of TiAl-based alloy for corrugated-core sandwich structure [J]. J. Mater. Eng. Perform., 2019, 28: 1986
|
77 |
Xu F F. Study on diffusion bonding process and interface testing method of multilayer stainless steel diaphragm structure [D]. Shanghai: Shanghai Jiao Tong University, 2021
|
77 |
徐芳菲. 多层不锈钢膜盒结构扩散连接工艺与界面检测方法研究 [D]. 上海: 上海交通大学, 2021
|
78 |
Sanders D G, Ramulu M, Edwards P D, et al. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6Al-4V friction stir welds [J]. J. Mater. Eng. Perform., 2010, 19: 503
|
79 |
Edwards P, Ramulu M. Fatigue performance of friction stir welded titanium structural joints [J]. Int. J. Fatigue, 2015, 70: 171
|
80 |
Edwards P, Ramulu M. Fatigue performance of friction stir welded Ti-6Al-4V subjected to various post weld heat treatment temperatures [J]. Int. J. Fatigue, 2015, 75: 19
|
81 |
Nakai M, Niinomi M, Komine K, et al. High-cycle fatigue properties of an easily hot-workable (α + β)-type titanium alloy butt joint prepared by friction stir welding below β transus temperature [J]. Mater. Sci. Eng., 2019, A742: 553
|
82 |
Xie P Y, Liu X G, Guo H D, et al. Study on diffusion bonding and joint fatigue property of titanium alloy [A]. The 8th Academic Conference Proceedings on Aircraft Engine Reliability of Chinese Society of Aeronautics and Astronautics [C]. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 721
|
82 |
谢佩玉, 刘小刚, 郭海丁 等. 钛合金扩散焊连接及接头疲劳性能研究 [A]. 中国航空学会第八届航空发动机可靠性学术交流会论文集 [C]. 北京: 中国航空学会, 2015: 721
|
83 |
Tuppen S J, Bache M R, Voice W E. A fatigue assessment of dissimilar titanium alloy diffusion bonds [J]. Int. J. Fatigue, 2005, 27: 651
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|