Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 473-485    DOI: 10.11900/0412.1961.2021.00548
  综述 本期目录 | 过刊浏览 |
钛合金及其扩散焊疲劳特性研究进展
李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军()
上海交通大学 材料科学与工程学院 塑性成形技术与装备研究院 上海 200030
Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics
LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun()
Institute of Forming Technology & Equipment, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
引用本文:

李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
Xifeng LI, Tianle LI, Dayong AN, Huiping WU, Jieshi CHEN, Jun CHEN. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. Acta Metall Sin, 2022, 58(4): 473-485.

全文: PDF(3386 KB)   HTML
摘要: 

本文主要对钛合金及其扩散焊疲劳特性研究进展进行了综述,总结了钛合金及其焊接后疲劳裂纹萌生和扩展的规律。概述了钛合金的化学成分和分类,以及常用焊接方法,重点介绍扩散焊的特点和优势。描述了循环载荷作用下滑移带形成和位错的运动现象,阐明疲劳裂纹萌生的机制。钛合金微观组织的选择是优化力学性能的常见方法,现有研究表明,制备层合结构是降低钛合金疲劳裂纹扩展速率的一种重要调控手段。不合适的焊接工艺参数会导致接头缺陷的形成,后续热处理能够降低接头缺陷,并提高焊接构件的疲劳寿命和疲劳强度。最后,简述了扩散焊制备多层和异种钛合金层合结构来实现构件高损伤容限的可行性。

关键词 钛合金扩散焊层合结构疲劳裂纹萌生裂纹扩展    
Abstract

This paper concentrates on the research progress of titanium alloys and their diffusion bonding fatigue characteristics, and summarizes the laws of fatigue crack initiation and growth of titanium alloys with/without welding. The chemical composition, classification, and common welding method of titanium alloys are stated, with emphasis on the features and advantages of diffusion bonding. The phenomena of slip band formation and dislocation movement under cyclic loading are described, and the mechanism of fatigue crack initiation is clarified. The selection of microstructures is a common method to optimize mechanical properties of titanium alloys. Previous studies suggested that the laminated structure is an important mode to realize the low fatigue crack growth rate of titanium alloys. Improper parameters of the welding process can cause joint defects, and further heat treatment can reduce joint defects while improving the fatigue life and strength. Finally, the multilayer and heterogeneous laminates of titanium alloys produced by diffusion bonding are briefly described to realize the possibility of high damage tolerance.

Key wordstitanium alloy    diffusion bonding    laminated structure    fatigue crack nucleation    crack growth
收稿日期: 2021-12-13     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(51875350);国家自然科学基金项目(52105383)
作者简介: 李细锋,男,1980年生,研究员,博士
图1  商用飞机中Ti的使用量随时间推移不断增加(气泡大小表示飞机载客量)[5]
Titanium alloy typeDomesticSimilar foreign brandNominal chemical compositionHeat treatmentTensile
brand(mass fraction / %)strength
MPa
α typeTA1USA, Ti-40TiAnnealing300
Near α typeTA18USA, Ti-3-2.5Ti-3Al-2.5VAnnealing620
TA15RUS, BT20Ti-6.5Al-2Zr-1Mo-1AlAnnealing930
α + β typeTC4USA, Ti-6-4 / RUS, BT6Ti-6Al-4VAnnealing895
TC18RUS, BT22Ti-5Al-5Mo-5V-1Cr-1FeDouble annealing1080
TC11RUS, BT9Ti-6.5Al-3.5Mo-1.5Zr-0.3SiAnnealing1030
TC21USA, Ti-6-22-22sTi-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-xSiDouble annealing1100
Near β typeTB6USA, Ti-1023Ti-10V-2Fe-3AlSolution and aging1105
Metastable β typeTB5USA, Ti-15-3Ti-15V-3Cr-3Sn-3AlSolution and aging1080
TB8USA, β21STi-15Mo-3Al-2.7Nb-0.2SiSolution and aging1250
表1  常用钛合金国内外牌号和名义化学成分[10,11]
图2  Mo当量钛合金类型示意图
图3  我国飞机结构钛合金发展趋势示意图
图4  置氢的Ti2AlNb/TC4异种钛合金扩散焊界面SEM微观组织表征、EDS分析与接头强度[24]
图5  梯形结构的驻留滑移带内部结构与产生的表面凹凸的关系示意图[36]
图6  疲劳裂纹扩展速率与ΔK的函数曲线
图7  基于同位扫描电镜观察增材制造TC4钛合金的疲劳裂纹扩展过程[54]
图8  TC4钛合金扩散焊层合结构疲劳断口形貌和裂纹扩展[61,62]
图9  异种钛合金[72]和钛基合金的扩散焊界面微观结构
图10  扩散焊制备TC4/TA15合金异质层合结构疲劳裂纹扩展断面特征[73]
图11  扩散焊层合结构样件[77]
图12  疲劳循环周次与施加应力幅的关系
图13  Ti550/TC4合金扩散焊接头和疲劳性能[83]
1 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
2 Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
3 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
4 Guo L G, Fan X G, Yu G F, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review [J]. Chin. J. Aeronaut., 2016, 29: 30
5 Gangwar K, Ramulu M. Friction stir welding of titanium alloys: A review [J]. Mater. Des., 2018, 141: 230
6 Schijve J. Fatigue damage in aircraft structures, not wanted, but tolerated? [J]. Int. J. Fatigue, 2009, 31: 998
7 Qian B Y, Li L, Sun J F, et al. Effects of annealing on the microstructures and mechanical properties of cold-rolled TB8 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2816
8 Mantri S A, Choudhuri D, Behera A, et al. Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S [J]. Metall. Mater. Trans., 2015, 46A: 2803
9 Tan C S, Li X L, Sun Q Y, et al. Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy [J]. Int. J. Fatigue, 2015, 75: 1
10 Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Volume IV Titanium Alloys and Copper Alloys [M]. 2nd Ed., Beijing: Standards Press of China, 2002: 5
10 《中国航空材料手册》编辑委员会. 中国航空材料手册-第四卷-钛合金 铜合金 [M]. 第2版, 北京: 中国标准出版社, 2002: 5
11 Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications [M]. Beijing: Aviation industry press, 2013: 77
11 朱知寿. 新型航空高性能钛合金材料技术研究与发展 [M].北京: 航空工业出版社, 2013: 77
12 Li J S, Tang B, Fan J K, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy [J]. Acta Metall. Sin., 2021, 57: 1438
12 李金山, 唐 斌, 樊江昆 等. 高强亚稳β钛合金变形机制及其组织调控方法 [J]. 金属学报, 2021, 57: 1438
13 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
13 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
14 Zhu Z S, Ma S J, Wang X N, et al. Study of fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy [J]. Titan. Ind. Progr., 2005, 22(6): 10
14 朱知寿, 马少俊, 王新南 等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究 [J]. 钛工业进展, 2005, 22(6): 10
15 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
16 Wang G Q. Study of thermomechanical process and electron beam welding properties of titanium alloy Ti-6246 [D]. Shenyang: University of Science and Technology of China, 2016
16 王国强. Ti-6246钛合金热机械处理及电子束焊接性研究 [D]. 沈阳: 中国科学技术大学, 2016
17 Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti-6Al-4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment [J]. Mater. Charact., 2019, 156: 109830
18 Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
19 Mohandas T, Banerjee D, Kutumbarao V V. Elevated temperature properties of electron beam welds of an α + β titanium alloy [J]. Mater. Sci. Eng., 1999, A269: 217
20 Fratini L, Micari F, Buffa G, et al. A new fixture for FSW processes of titanium alloys [J]. CIRP Ann., 2010, 59: 271
21 Kovacevic S, Pan R, Sekulic D P, et al. Interfacial energy as the driving force for diffusion bonding of ceramics [J]. Acta Mater., 2020, 186: 405
22 Wu H P, Yang W B, Peng H L, et al. Diffusion bonding criterion based on real surface asperities: Modeling and validation [J]. J. Manuf. Processes, 2020, 57: 477
23 Li X F, Chen X, Li B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment [J]. Mater. Charact., 2019, 157: 109919
24 Zhu F H, Peng H L, Li X F, et al. Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys [J]. Mater. Des., 2018, 159: 68
25 Li X, Wang G F, Zhang J X, et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 77
26 Li X, Wang G F, Gu Y B, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment [J]. Mater. Des., 2018, 157: 351
27 Feng R, Rao Y, Liu C H, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J]. Nat. Commun., 2021, 12: 3588
28 Cao Y K, Zeng F P, Liu B, et al. Characterization of fatigue properties of powder metallurgy titanium alloy [J]. Mater. Sci. Eng., 2016, A654: 418
29 Li X Z. Research on the microstructure and fatigue property of electron beam welding joint in titanium alloy [D] Wuhan: Huazhong University of Science and Technology, 2012
29 李行志. 钛合金电子束焊接接头显微组织及疲劳性能研究 [D]. 武汉: 华中科技大学, 2012
30 Bettaieb M B, Lenain A, Habraken A M. Static and fatigue characterization of the Ti5553 titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 401
31 Gilbert J L, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V [J]. Metall. Mater. Trans., 1993, 24A: 669
32 Ivanova S G, Biederman R R, Sisson R D Jr. Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue [J]. J. Mater. Eng. Perform., 2002, 11: 226
33 Oberwinkler B, Lettner A, Eichlseder W. Multiscale fatigue crack observations on Ti-6Al-4V [J]. Int. J. Fatigue, 2011, 33: 710
34 Meng L, Gao J B, Yue J K, et al. Stress-based fatigue behavior of Ti-6Al-4V alloy with a discontinuous lamellar microstructure fabricated by thermomechanical powder consolidation [J]. Mater. Sci. Eng., 2020, A798: 140085
35 Man J, Petrenec M, Obrtlík K, et al. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel [J]. Acta Mater., 2004, 52: 5551
36 Polák J, Man J. Experimental evidence and physical models of fatigue crack initiation [J]. Int. J. Fatigue, 2016, 91: 294
37 Lam Y C, Lian K S. The effect of residual stress and its redistribution of fatigue crack growth [J]. Theor. Appl. Fract. Mech., 1989, 12: 59
38 Paris P C, Gomez M P, Anderson W E. A rational analytic theory of fatigue [J]. Trends Eng., 1961, 13: 9
39 Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures [J]. J. Fluids Eng., 1967, 89: 459
40 Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [J]. Eff. Environ. Complex Load Hist. Fatigue Life, 1970, 462: 1
41 Wang H, Zhao Q Y, Xin S W, et al. Fatigue crack propagation behaviors in Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy with STA and BASCA heat treatments [J]. Int. J. Fatigue, 2021, 151: 106348
42 Guo P, Zhao Y Q, Zeng W D, et al. Effect of microstructure on the fatigue crack propagation behavior of TC4-DT titanium alloy [J]. J. Mater. Eng. Perform., 2015, 24: 1865
43 Shi X H, Zeng W D, Shi C L, et al. The effects of colony microstructure on the fatigue crack growth behavior for Ti-6A1-2Zr-2Sn-3Mo-1Cr-2Nb titanium alloy [J]. Mater. Sci. Eng., 2015, A621: 252
44 Yue Y, Dai L Y, Zhong H, et al. Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy [J]. J. Alloys Compd., 2017, 696: 663
45 Mine Y, Katashima S, Ding R G, et al. Fatigue crack growth behaviour in single-colony lamellar structure of Ti-6Al-4V [J]. Scr. Mater., 2019, 165: 107
46 Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V [J]. Acta Mater., 2007, 55: 5655
47 Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
48 Shi X H, Zeng W D, Shi C L, et al. Study on the fatigue crack growth rates of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure [J]. Mater. Sci. Eng., 2015, A621: 143
49 Tokaji K, Ogawa T, Ohya K. The effect of grain size on small fatigue crack growth in pure titanium [J]. Int. J. Fatigue, 1994, 16: 571
50 Verdhan N, Bhende D D, Kapoor R, et al. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy [J]. Int. J. Fatigue, 2015, 74: 46
51 Hassanipour M, Watanabe S, Hirayama K, et al. Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2019, A766: 138264
52 Mine Y, Ando S, Takashima K. Crystallographic fatigue crack growth in titanium single crystals [J]. Mater. Sci. Eng., 2011, A528: 7570
53 Zhang K, Wu X, Davies C H J. Effect of microtexture on short crack propagation in two-phase titanium alloys [J]. Int. J. Fatigue, 2017, 104: 206
54 Wang X Y, Zhao Y, Wang L B, et al. In-situ SEM investigation and modeling of small crack growth behavior of additively manufactured titanium alloy [J]. Int. J. Fatigue, 2021, 149: 106303
55 Shi X H. Investigation on the damage tolerace property and high cycle fatigue strength of TC18 titanium alloy with basket-weave microstructure [D]. Xi'an: Northwestern Polytechnical University, 2016
55 石晓辉. 网篮组织TC18钛合金损伤容限性能及高周疲劳强度研究 [D]. 西安: 西北工业大学, 2016
56 Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics [J]. Nature, 1990, 347: 455
57 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
58 Huang Y, Zhang H W. The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates [J]. Acta Metall. Mater., 1995, 43: 1523
59 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
60 Dong Y H, He X F, Li Y H. Effect of interface region on fatigue crack growth in diffusion-bonded laminate of Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 117: 63
61 He X F, Dong Y H, Li Y H, et al. Fatigue crack growth in diffusion-bonded Ti-6Al-4V laminate with unbonded zones [J]. Int. J. Fatigue, 2018, 106: 1
62 Liu Y, Zhang Y C, Liu S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates [J]. Eng. Fract. Mech., 2016, 163: 176
63 Junet A, Messager A, Boulnat X, et al. Fabrication of artificial defects to study internal fatigue crack propagation in metals [J]. Scr. Mater., 2019, 171: 87
64 Adharapurapu R R, Vecchio K S, Jiang F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metall. Mater. Trans., 2005, 36A: 1595
65 Liao K H, Su C Y, Yu M Y. Interfacial microstructure and mechanical properties of diffusion-bonded W-10 Cu composite/AlN ceramic using Ni-P and Ti interlayers [J]. J. Alloys Compd., 2021, 867: 159050
66 Eskizeybek V, Avci A, Akdemir A, et al. Fatigue behavior and damage assessment of stainless steel/aluminum composites [J]. J. Eng. Mater. Technol. Trans., 2011, 133: 021016
67 Li P, Ji X H, Xue K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties [J]. J. Mater. Eng. Perform., 2017, 26: 1839
68 Zhong Z H, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer [J]. J. Alloys Compd., 2010, 489: 545
69 Wang X F, Ma M, Liu X B, et al. Interface characteristics in diffusion bonding of a γ-TiAl alloy to Ti-6Al-4V [J]. J. Mater. Sci., 2007, 42: 4004
70 Sun L X, Li M Q, Li L. Characterization of crystal structure in the bonding interface between TC17 and TC4 alloys [J]. Mater. Charact., 2019, 153: 169
71 Zhu F H. Study on diffusion bonding mechanism and nondestructive testing method of interface defects of dissimilar titanium based alloys [D]. Shanghai: Shanghai Jiao Tong University, 2020
71 朱富慧. 异种钛基合金扩散连接机理及界面缺陷无损检测方法研究 [D]. 上海: 上海交通大学, 2020
72 Jia G P. Study on sperplastic deformation behavior of Ti2AlNb alloy [D]. Shanghai: Shanghai Jiao Tong University, 2019
72 贾国朋. Ti2AlNb基合金超塑变形行为研究 [D]. 上海: 上海交通大学, 2019
73 Li T L, Wu H P, Wang B, et al. Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding [J]. Int. J. Fatigue, 2021, 156: 106646
74 Du Z H, Jiang S S, Zhang K F, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Mater. Des., 2016, 104: 242
75 Du Z H, Zhang K F. The superplastic forming/diffusion bonding and mechanical property of TA15 alloy for four‐layer hollow structure with squad grid [J]. Int. J. Mater. Form., 2021, 14: 1057
76 Du Z H, Zhang K F. The hot bending and diffusion bonding of TiAl-based alloy for corrugated-core sandwich structure [J]. J. Mater. Eng. Perform., 2019, 28: 1986
77 Xu F F. Study on diffusion bonding process and interface testing method of multilayer stainless steel diaphragm structure [D]. Shanghai: Shanghai Jiao Tong University, 2021
77 徐芳菲. 多层不锈钢膜盒结构扩散连接工艺与界面检测方法研究 [D]. 上海: 上海交通大学, 2021
78 Sanders D G, Ramulu M, Edwards P D, et al. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6Al-4V friction stir welds [J]. J. Mater. Eng. Perform., 2010, 19: 503
79 Edwards P, Ramulu M. Fatigue performance of friction stir welded titanium structural joints [J]. Int. J. Fatigue, 2015, 70: 171
80 Edwards P, Ramulu M. Fatigue performance of friction stir welded Ti-6Al-4V subjected to various post weld heat treatment temperatures [J]. Int. J. Fatigue, 2015, 75: 19
81 Nakai M, Niinomi M, Komine K, et al. High-cycle fatigue properties of an easily hot-workable (α + β)-type titanium alloy butt joint prepared by friction stir welding below β transus temperature [J]. Mater. Sci. Eng., 2019, A742: 553
82 Xie P Y, Liu X G, Guo H D, et al. Study on diffusion bonding and joint fatigue property of titanium alloy [A]. The 8th Academic Conference Proceedings on Aircraft Engine Reliability of Chinese Society of Aeronautics and Astronautics [C]. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 721
82 谢佩玉, 刘小刚, 郭海丁 等. 钛合金扩散焊连接及接头疲劳性能研究 [A]. 中国航空学会第八届航空发动机可靠性学术交流会论文集 [C]. 北京: 中国航空学会, 2015: 721
83 Tuppen S J, Bache M R, Voice W E. A fatigue assessment of dissimilar titanium alloy diffusion bonds [J]. Int. J. Fatigue, 2005, 27: 651
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[11] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[12] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[13] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[15] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.