| 
					引用本文:
						|  |  
    					|  |  
    					| 热电材料的载流子迁移率优化 |  
						| 赵立东(  ), 王思宁, 肖钰(  ) |  
					| 北京航空航天大学 材料科学与工程学院 北京 100191 |  
						|  |  
    					| Carrier Mobility Optimization in Thermoelectric Materials |  
						| ZHAO Li-Dong(  ), WANG Sining, XIAO Yu(  ) |  
						| School of Materials Science and Engineering, Beihang University, Beijing 100191, China |  
								赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.	
																												Li-Dong ZHAO,
																								Sining WANG,
																												Yu XIAO. 
				Carrier Mobility Optimization in Thermoelectric Materials[J]. Acta Metall Sin, 2021, 57(9): 1171-1183.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321: 1457 |  
																| 2 | Xiao Y, Zhao L D. Seeking new, highly effective thermoelectrics [J]. Science, 2020, 367: 1196 |  
																| 3 | DiSalvo F J. Thermoelectric cooling and power generation [J]. Science, 1999, 285: 703 |  
																| 4 | Yang J H, Stabler F R. Automotive applications of thermoelectric materials [J]. J. Electron. Mater., 2009, 38: 1245 |  
																| 5 | Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity [J]. J. Materiomics, 2015, 1: 92 |  
																| 6 | Chang C, Zhao L D. Anharmoncity and low thermal conductivity in thermoelectrics [J]. Mater. Today Phys., 2018, 4: 50 |  
																| 7 | Case E D. Thermal fatigue and waste heat recovery via thermoelectrics [J]. J. Electron. Mater., 2012, 41: 1811 |  
																| 8 | Zhao L D, He J Q, Hao S Q, et al. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS [J]. J. Am. Chem. Soc., 2012, 134: 16327 |  
																| 9 | Snyder G J, Snyder A H. Figure of merit ZT of a thermoelectric device defined from materials properties [J]. Energy Environ. Sci., 2017, 10: 2280 |  
																| 10 | Hu X K, Zhang S M, Zhao F, et al. Thermoelectric device: Contact interface and interface materials [J]. J. Inorg. Mater., 2019, 34: 269 |  
																| 10 | 胡晓凯, 张双猛, 赵 府等. 热电器件的界面和界面材料 [J]. 无机材料学报, 2019, 34: 269 |  
																| 11 | Zhang Q H, Bai S Q, Chen L D. Technologies and applications of thermoelectric devices: Current status, challenges and prospects [J]. J. Inorg. Mater., 2019, 34: 279 |  
																| 11 | 张骐昊, 柏胜强, 陈立东. 热电发电器件与应用技术: 现状、挑战与展望 [J]. 无机材料学报, 2019, 34: 279 |  
																| 12 | Kanatzidis M G. Nanostructured thermoelectrics: The new paradigm? [J]. Chem. Mater., 2010, 22: 648 |  
																| 13 | Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105 |  
																| 14 | Xiao Y, Li W, Chang C, et al. Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying [J]. J. Alloys Compd., 2017, 724: 208 |  
																| 15 | Sales B C. Electron crystals and phonon glasses: A new path to improved thermoelectric materials [J]. MRS Bull., 1998, 23: 15 |  
																| 16 | Zhao L D, Dravid V P, Kanatzidis M G. The panoscopic approach to high performance thermoelectrics [J]. Energy Environ. Sci., 2014, 7: 251 |  
																| 17 | Ren P, Liu Y M, He J, et al. Recent advances in inorganic material thermoelectrics [J]. Inorg. Chem. Front., 2018, 5: 2380 |  
																| 18 | Wang H, Pei Y Z, LaLonde A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 9705 |  
																| 19 | Zhang G, Li B W. Impacts of doping on thermal and thermoelectric properties of nanomaterials [J]. Nanoscale, 2010, 2: 1058 |  
																| 20 | Pan L, Mitra S, Zhao L D, et al. The role of ionized impurity scattering on the thermoelectric performances of rock salt AgPbm-SnSe2+m [J]. Adv. Funct. Mater., 2016, 26: 5149 |  
																| 21 | Zhao L D, Wu H J, Hao S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy Environ. Sci., 2013, 6: 3346 |  
																| 22 | Zhang L J, Qin P, Han C, et al. Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence via Q/In (Q = Mg, Ag, Bi) co-doping [J]. J. Mater. Chem., 2018, 6A: 2507 |  
																| 23 | Pei Y Z, Shi X Y, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics [J]. Nature, 2011, 473: 66 |  
																| 24 | Jaworski C M, Kulbachinskii V, Heremans J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power [J]. Phys. Rev., 2009, 80B: 233201 |  
																| 25 | Skipetrov E P, Pichugin N A, Slyn'ko E I, et al. On the resonant level of chromium in the rhombohedral and cubic phases of Pb1-x-yGexCryTe alloys [J]. Semiconductors, 2013, 47: 729 |  
																| 26 | Qin Y X, Xiao Y, Zhao L D. Carrier mobility does matter for enhancing thermoelectric performance [J]. APL Mater., 2020, 8: 010901 |  
																| 27 | Liu Y, Zhao L D, Zhu Y C, et al. Synergistically optimizing electrical and thermal transport properties of bicuseo via a dual-doping approach [J]. Adv. Energy Mater., 2016, 6: 1502423 |  
																| 28 | Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials [J]. Chem. Rev., 2016, 116: 12123 |  
																| 29 | Qin B C, Wang D Y, He W K, et al. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification [J]. J. Am. Chem. Soc., 2019, 141: 1141 |  
																| 30 | Xiao Y, Wang D Y, Zhang Y, et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS [J]. J. Am. Chem. Soc., 2020, 142: 4051 |  
																| 31 | Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater., 2010, 2: 152 |  
																| 32 | Shen J J, Fang T, Fu T Z, et al. Lattice thermal conductivity in thermoelectric materials [J]. J. Inorg. Mater., 2019, 34: 260 |  
																| 32 | 沈家骏, 方 腾, 傅铁铮等. 热电材料中的晶格热导率 [J]. 无机材料学报, 2019, 34: 260 |  
																| 33 | Wan C L, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model [J]. Phys. Rev., 2006, 74B: 144109 |  
																| 34 | Ge Z H, Qiu Y, Chen Y X, et al. Multipoint defect synergy realizing the excellent thermoelectric performance of n-type polycrystalline SnSe via Re doping [J]. Adv. Funct. Mater., 2019, 29: 1902893 |  
																| 35 | Liu W S, Zhang B P, Li J F, et al. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound [J]. J. Phys., 2007, 40D: 6784 |  
																| 36 | Hu L P, Zhu T J, Liu X H, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials [J]. Adv. Funct. Mater., 2014, 24: 5211 |  
																| 37 | Medlin D L, Snyder G J. Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science [J]. Curr. Opin. Colloid Interface Sci., 2009, 14: 226 |  
																| 38 | Rowe D M, Shukla V S, Savvides N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys [J]. Nature, 1981, 290: 765 |  
																| 39 | Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride [J]. ChemSusChem, 2015, 8: 2312 |  
																| 40 | Chang C, Wu M H, He D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals [J]. Science, 2018, 360: 778 |  
																| 41 | Zhao L D, Tan G J, Hao S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe [J]. Science, 2016, 351: 141 |  
																| 42 | He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals [J]. Science, 2019, 365: 1418 |  
																| 43 | Li S, Wang Y M, Chen C, et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe [J]. Adv. Sci., 2018, 5: 1800598 |  
																| 44 | Wei T R, Tan G J, Zhang X M, et al. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe [J]. J. Am. Chem. Soc., 2016, 138: 8875 |  
																| 45 | Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS [J]. J. Mater. Chem. C, 2019, 7: 3351 |  
																| 46 | Xiao Y, Chang C, Pei Y L, et al. Origin of low thermal conductivity in SnSe [J]. Phys. Rev., 2016, 94B: 125203 |  
																| 47 | He W K, Wang D Y, Dong J F, et al. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals [J]. J. Mater. Chem., 2018, 6A: 10048 |  
																| 48 | He W K, Qin B C, Zhao L D. Predicting the potential performance in p-type SnS crystals via utilizing the weighted mobility and quality factor [J]. Chin. Phys. Lett., 2020, 37: 087104 |  
																| 49 | Zhang X X, Chang C, Zhou Y M, et al. BiCuSeO Thermoelectrics: An update on recent progress and perspective [J]. Materials, 2017, 10: 198 |  
																| 50 | Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material [J]. Energy Environ. Sci., 2012, 5: 7188 |  
																| 51 | Zhao L D, Berardan D, Pei Y L, et al. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials [J]. Appl. Phys. Lett., 2010, 97: 092118 |  
																| 52 | Wang S Y, Sun Y X, Yang J, et al. High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening [J]. Energy Environ. Sci., 2016, 9: 3436 |  
																| 53 | Liu X Y, Wang D Y, Wu H J, et al. Intrinsically low thermal conductivity in BiSbSe3: A promising thermoelectric material with multiple conduction bands [J]. Adv. Funct. Mater., 2019, 29: 1806558 |  
																| 54 | Wang S N, Su L Z, Qiu Y T, et al. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70: 67 |  
																| 55 | Huang Z W, Zhao L D. Sb2Si2Te6: A robust new thermoelectric material [J]. Trends Chem., 2020, 2: 89 |  
																| 56 | Luo Y B, Cai S T, Hao S Q, et al. High-performance thermoelectrics from cellular nanostructured Sb2Si2Te6 [J]. Joule, 2020, 4: 159 |  
																| 57 | Wang D Y, Huang Z W, Zhang Y, et al. Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure [J]. Sci. China Mater., 2020, 63: 1759 |  
																| 58 | Jiang J, Chen L D, Bai S Q, et al. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering [J]. Scr. Mater., 2005, 52: 347 |  
																| 59 | Zhao L D, Zhang B P, Li J F, et al. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering [J]. Solid State Sci., 2008, 10: 651 |  
																| 60 | Li Y W, Li F, Dong J F, et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders [J]. J. Mater. Chem., 2016, 4C: 2047 |  
																| 61 | Shang P P, Dong J F, Pei J, et al. Highly textured n-type SnSe polycrystals with enhanced thermoelectric performance [J]. Research, 2019, 2019: 9253132 |  
																| 62 | Sui J H, Li J, He J Q, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides [J]. Energy Environ. Sci., 2013, 6: 2916 |  
																| 63 | Li J, Zhang X Y, Chen Z W, et al. Low-symmetry rhombohedral GeTe thermoelectrics [J]. Joule, 2018, 2: 976 |  
																| 64 | Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J]. Nature, 2014, 508: 373 |  
																| 65 | Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals [J]. Nat. Commun., 2016, 7: 13713 |  
																| 66 | Peng K L, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals [J]. Energy Environ. Sci., 2016, 9: 454 |  
																| 67 | Peng K L, Zhang B, Wu H, et al. Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals [J]. Mater. Today, 2018, 21: 501 |  
																| 68 | Hou Z H, Xiao Y, Zhao L D. Investigation on carrier mobility when comparing nanostructures and bands manipulation [J]. Nanoscale, 2020, 12: 12741 |  
																| 69 | Cha J, Zhou C, Lee Y K, et al. High thermoelectric performance in n-type polycrystalline SnSe via dual incorporation of Cl and PbSe and dense nanostructures [J]. ACS Appl. Mater. Interfaces, 2019, 11: 21645 |  
																| 70 | Banik A, Vishal B, Perumal S, et al. The origin of low thermal conductivity in Sn1-xSbxTe: Phonon scattering via layered intergrowth nanostructures [J]. Energy Environ. Sci., 2016, 9: 2011 |  
																| 71 | Sharp J W, Poon S J, Goldsmid H J. Boundary scattering and the thermoelectric figure of merit [J]. Phys. Status Solidi, 2001, 187A: 507 |  
																| 72 | You L, Zhang J Y, Pan S S, et al. Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe [J]. Energy Environ. Sci., 2019, 12: 3089 |  
																| 73 | Xiao Y, Wu H J, Li W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-Type PbTe-Cu2Te [J]. J. Am. Chem. Soc., 2017, 139: 18732 |  
																| 74 | Qian X, Wang D Y, Zhang Y, et al. Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM0.01Se [J]. J. Mater. Chem., 2020, 8A: 5699 |  
																| 75 | Qian X, Wu H, Wang D, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn [J]. Mater. Today Phys., 2019, 9: 100102 |  
																| 76 | Pei Y Z, May A F, Snyder G J. Self-tuning the carrier concentration of PbTe/Ag2Te composites with excess Ag for high thermoelectric performance [J]. Adv. Energy Mater., 2011, 1: 291 |  
																| 77 | Ahn K, Han M K, He J Q, et al. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit [J]. J. Am. Chem. Soc., 2010, 132: 5227 |  
																| 78 | Zhang J, Wu D, He D S, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering [J]. Adv. Mater., 2017, 29: 1703148 |  
																| 79 | Cai S T, Hao S Q, Luo Z Z, et al. Discordant nature of Cd in PbSe: Off-centering and core-shell nanoscale CdSe precipitates lead to high thermoelectric performance [J]. Energy Environ. Sci., 2020, 13: 200 |  
																| 80 | Zeng L J K, Zhang J Y, You L, et al. Enhanced thermoelectric performance in PbSe-SrSe solid solution by Mn substitution [J]. J. Alloys Compd., 2016, 687: 765 |  
																| 81 | Zhang X, Wang D Y, Wu H J, et al. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues [J]. Energy Environ. Sci., 2017, 10: 2420 |  
																| 82 | Teng W, Wang H C, Su W B, et al. Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing [J]. J. Mater. Chem., 2020, 8: 7393 |  
																| 83 | Zheng Y, Wang S Y, Liu W, et al. Thermoelectric transport properties of p-type silver-doped PbS with in situ Ag2S nanoprecipitates [J]. J. Phys., 2014, 47D: 115303 |  
																| 84 | Zhao L D, Lo S H, He J Q, et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures [J]. J. Am. Chem. Soc., 2011, 133: 20476 |  
																| 85 | Jiang B B, Liu X X, Wang Q, et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials [J]. Energy Environ. Sci., 2020, 13: 579 |  
																| 86 | Weidner M, Fuchs A, Bayer T J M, et al. Defect modulation doping [J]. Adv. Funct. Mater., 2019, 29: 1807906 |  
																| 87 | Zhang X Y, Pei Y Z. Manipulation of charge transport in thermoelectrics [J]. npj Quantum Mater., 2017, 2: 68 |  
																| 88 | Tsukazaki A, Akasaka S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9: 889 |  
																| 89 | Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites [J]. Nano Lett., 2012, 12: 2077 |  
																| 90 | Pei Y L, Wu H J, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping [J]. J. Am. Chem. Soc., 2014, 136: 13902 |  
																| 91 | Zebarjadi M, Joshi G, Zhu G H, et al. Power factor enhancement by modulation doping in bulk nanocomposites [J]. Nano Lett., 2011, 11: 2225 |  
																| 92 | Hasan N, Wahid H, Nayan N, et al. Inorganic thermoelectric materials: A review [J]. Int. J. Energy Res., 2020, 44: 6170 |  
																| 93 | Wu D, Pei Y L, Wang Z, et al. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites [J]. Adv. Funct. Mater., 2014, 24: 7763 |  
																| 94 | Banik A, Shenoy U S, Anand S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chem. Mater., 2015, 27: 581 |  
																| 95 | Chen Z W, Jian Z Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence [J]. Adv. Mater., 2017, 29: 1606768 |  
																| 96 | Skipetrov E P, Skipetrova L A, Knotko A V, et al. Scandium resonant impurity level in PbTe [J]. J. Appl. Phys., 2014, 115: 133702 |  
																| 97 | Maier S, Ohno S, Yu G, et al. Resonant bonding, multiband thermoelectric transport, and native defects in n-type BaBiTe3-xSex (x = 0, 0.05, and 0.1) [J]. Chem. Mater., 2018, 30: 174 |  
																| 98 | Xiao Y, Wang D Y, Qin B C, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe [J]. J. Am. Chem. Soc., 2018, 140: 13097 |  
																| 99 | Bali A, Chetty R, Sharma A, et al. Thermoelectric properties of In and I doped PbTe [J]. J. Appl. Phys., 2016, 120: 175101 |  
																| 100 | Sootsman J R, Kong H J, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring [J]. Angew. Chem. Int. Ed., 2008, 47: 8618 |  
																| 101 | Pei Y Z, Lensch-Falk J, Toberer E S, et al. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and la doping [J]. Adv. Funct. Mater., 2011, 21: 241 |  
																| 102 | Papageorgiou C, Giapintzakis J, Kyratsi T. Low-temperature synthesis and thermoelectric properties of n-type PbTe [J]. J. Electron. Mater., 2013, 42: 1911 |  
																| 103 | Zhao M H, Chang C, Xiao Y, et al. Investigations on distinct thermoelectric transport behaviors of Cu in n-type PbS [J]. J. Alloys Compd., 2019, 781: 820 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |