Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 822-830    DOI: 10.11900/0412.1961.2020.00289
  研究论文 本期目录 | 过刊浏览 |
一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出
许坤1, 王海川1, 孔辉1, 吴朝阳1(), 张战2
1.安徽工业大学 冶金减排与资源综合利用教育部重点实验室 马鞍山 243032
2.武汉科技大学 材料与冶金学院 武汉 430081
Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model
XU Kun1, WANG Haichuan1, KONG Hui1, WU Zhaoyang1(), ZHANG Zhan2
1.Key Laboratory of Metallurgical Emission Reduction & Resources Recyling, Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
2.School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
Kun XU, Haichuan WANG, Hui KONG, Zhaoyang WU, Zhan ZHANG. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. Acta Metall Sin, 2021, 57(6): 822-830.

全文: PDF(3368 KB)   HTML
摘要: 

先详细介绍了未分组团簇动力学模型和已有的分组法,然后引入一种基于组内团簇密度对数线性分布的新方法。通过比较未分组和不同分组法的团簇动力学模型模拟300℃时Al-0.18%Sc (原子分数)合金中Al3Sc的析出动力学的数值解,证实新的分组法能在保持良好整体和局部精度的前提下显著节约计算成本。新分组法的计算结果与等温析出实验测量的析出平均半径和尺寸分布结果能够比较合理地吻合,预期它在大尺度析出模拟时前景良好。

关键词 析出动力学团簇动力学模型粒径分组法Al-Sc合金均质析出    
Abstract

Cluster dynamics is a mesoscopic modeling technique describing the various kinetic stages of homogeneous precipitation by the same set of rate equations. However, when the simulated cluster size continuously increases, it easily causes an enormous computational workload, and the use of a particle-size-grouping method is often necessary to solve this problem. In this study, an ungrouped cluster dynamics model and certain existing grouping methods are reviewed. Next, a new grouping method with an assumed logarithmically-linear distribution of cluster number densities inside each group size is proposed. Comparing the results of all grouped models with the exact solution of the ungrouped model for simulating aluminum-scandium (Al3Sc) precipitation in the Al-0.18%Sc (atomic fraction) alloy at 300oC, the new grouping method was able to reduce computational costs considerably keeping enough total and local accuracies. Moreover, the reasonable agreements of the mean radii and size distributions as functions of time between experiments and simulations were obtained, demonstrating the ability of the new grouping method in modeling large-scale precipitation kinetics.

Key wordsprecipitation kinetics    cluster dynamics model    particle-size-grouping method    Al-Sc alloy    homogeneous precipitation
收稿日期: 2020-08-05     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(U1960109);安徽省留学回国人员创新创业扶持计划重点项目
作者简介: 许 坤,男,1978年生,副教授,博士
图1  3种粒径分组法和未分组团簇动力学模型计算的Al3Sc团簇组尺寸分布的比较(a) Kiritani method(b) G-O method(c) new grouping method
MethodStorage spaceComputational time / s
Ungrouped CD modeliM = 160008471.6
Kiritani methodGM = 200179.2
G-O methodGM = 1541798.2
New grouping methodGM = 149675.4
表1  析出时间1 × 107 s时对应的不同团簇动力学模型的计算成本的比较
图2  3种粒径分组法和未分组团簇动力学模型计算的Al3Sc未分组团簇尺寸分布的比较(a) Kiritani method(b) G-O method(c) new grouping method
图3  Al-0.18%Sc合金300℃等温析出Al3Sc时的计算结果和测量结果的比较(a) total number density (NP)(b) mean radius (rP)
图4  300℃等温析出时归一化Al3Sc尺寸分布计算结果与实验测量和LSW分布的比较
1 Mathon M H, Barbu A, Dunstetter F, et al. Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys [J]. J. Nucl. Mater., 1997, 245: 224
2 Christien F, Barbu A. Modelling of copper precipitation in iron during thermal aging and irradiation [J]. J. Nucl. Mater., 2004, 324: 90
3 Clouet E, Barbu A, Laé L, et al. Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics [J]. Acta Meter., 2005, 53: 2313
4 Lepinoux L. Modelling precipitation in binary alloys by cluster dynamics [J]. Acta Mater., 2009, 57: 1086
5 Ke H B, Wells P, Edmondson P D, et al. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels [J]. Acta Mater., 2017, 138: 10
6 Kiritani M. Analysis of the clustering process of supersaturated lattice vacancies [J]. J. Phys. Soc. Jpn., 1973, 35: 95
7 Koiwa M. On the validity of the grouping method—Comments on “analysis of the clustering process of supersaturated lattice vacancies”–[J]. J. Phys. Soc. Jpn., 1974, 37: 1532
8 Golubov S I, Ovcharenko A M, Barashev A V, et al. Grouping method for the approximate solution of a kinetic equation describing the evolution of point-defect clusters [J]. Philos. Mag., 2001, 81A: 643
9 Ovcharenko A M, Golubov S I, Woo C H, et al. GMIC++: Grouping method in C++: An efficient method to solve large number of Master equations [J]. Comput. Phys. Commun., 2003, 152: 208
10 Liu C, He L, Zhai Y, et al. Evolution of small defect clusters in ion-irradiated 3C-SiC: Combined cluster dynamics modeling and experimental study [J]. Acta Mater., 2017, 125: 377
11 Fell M, Murphy S M. The nucleation and growth of gas bubbles in irradiated metals [J]. J. Nucl. Mater., 1990, 172: 1
12 Golubov S I, Stoller R E, Zinkle S J, et al. Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing [J]. J. Nucl. Mater., 2007, 361: 149
13 Kampmann R, Wagner R. Kinetics of precipitation in metastable binary alloys—Τheory and application to Cu-1.9at % Ti and Ni-14 at % Al [A]. Decomposition of Alloys: The Early Stages [C]. Oxford: Pergamon Press, 1984: 91
14 Cahn R W, Haasen P, Kramer E J. Materials Science and Technology [M]. Weinheim: John Wiley & Sons Inc., 1991: 213
15 Svoboda J, Fischer F D, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory [J]. Mater. Sci. Eng., 2004, A385: 166
16 Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
17 Zhang L F, Li Y L, Ren Y. Fundamentals of non-metallic inclusions in steel: part I. Control of unsteady casting and big inclusion; nucleation, motion, removal and capture of inclusions in molten steel [J]. Iron Steel, 2013, 48(11): 1
17 张立峰, 李燕龙, 任 英. 钢中非金属夹杂物的相关基础研究(I)——非稳态浇铸中的大颗粒夹杂物及夹杂物的形核、长大、运动、去除和捕捉 [J]. 钢铁, 2013, 48(11): 1
18 Li Y G, Zhou W H, Huang L F, et al. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten [J]. J. Nucl. Mater., 2012, 431: 26
19 Gao C. Cluster dynamics simulation of defect evolution in electron-irradiated BCC Fe and Fe-Cu dilute alloys [D]. Shanghai: Shanghai University, 2015
19 高 超. BCC铁和铁铜合金电子辐照缺陷演化的团簇动力学模拟 [D]. 上海: 上海大学, 2015
20 Xu K, Thomas B G. Particle-size-grouping model of precipitation kinetics in microalloyed steels [J]. Metall. Mater. Trans., 2012, 43A: 1079
21 Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys [J]. Acta Mater., 2001, 49: 1909
22 Watanabe C, Kondo T, Monzen R. Coarsening of Al3Sc precipitates in an Al-0.28 wt pct Sc alloy [J]. Metall. Mater. Trans., 2004, 35A: 3003
23 Røyset J, Ryum N. Kinetics and mechanisms of precipitation in an Al-0.2 wt.% Sc alloy [J]. Mater. Sci. Eng., 2005, A396: 409
24 Fujikawa S I. Impurity diffusion of scandium in aluminium [J]. Defect Diffus. Forum., 1997, 143-147: 115
25 Novotny G M, Ardell A J. Precipitation of Al3Sc in binary Al-Sc alloys [J]. Mater. Sci. Eng., 2001, A318: 144
26 Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates [J]. Acta Mater., 2004, 52: 591
27 Robson J D, Jones M J, Prangnell P B. Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al-Sc alloys [J]. Acta Mater., 2003, 51: 1453
28 Hyland R W. Homogeneous nucleation kinetics of Al3Sc in a dilute Al-Sc alloy [J]. Metall. Mater. Trans., 1992, 23A: 1947
29 Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20: 950
30 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[5] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[6] 苏振兴 王雨晨 王绍青. Al-Sc合金相结构的第一原理研究[J]. 金属学报, 2010, 46(5): 623-628.
[7] 刘文昌;陈宗霖;肖福仁;姚枚;王少刚;刘润广. 冷轧变形对Inconel 718合金δ相析出动力学的影响[J]. 金属学报, 1998, 34(10): 1049-1054.
[8] 徐温崇;孙福玉;赵佩祥. 钢中(Nb,V)碳氮化物应变诱导析出动力学[J]. 金属学报, 1988, 24(5): 331-335.