|
|
抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展 |
刘悦1( ), 汤鹏正1, 杨昆明1, 沈一鸣2, 吴中光2, 范同祥1( ) |
1.上海交通大学 金属基复合材料国家重点实验室 上海 200240 2.上海航天技术研究院 上海 201109 |
|
Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials |
LIU Yue1( ), TANG Pengzheng1, YANG Kunming1, SHEN Yiming2, WU Zhongguang2, FAN Tongxiang1( ) |
1.State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China 2.Shanghai Academy of Spaceflight Technology, Shanghai 201109, China |
引用本文:
刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
Yue LIU,
Pengzheng TANG,
Kunming YANG,
Yiming SHEN,
Zhongguang WU,
Tongxiang FAN.
Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. Acta Metall Sin, 2021, 57(2): 150-170.
1 |
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
|
2 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
|
3 |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
|
4 |
Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
|
5 |
Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. New York: Springer, 2007: 827
|
6 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
|
7 |
Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
|
8 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
|
9 |
Cheng G M, Xu W Z, Wang Y Q, et al. Grain size effect on radiation tolerance of nanocrystalline Mo [J]. Scr. Mater., 2016, 123: 90
|
10 |
Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
|
11 |
Han W Z, Demkowicz M J, Mara N A, et al. Design of radiation tolerant materials via interface engineering [J]. Adv. Mater., 2013, 25: 6975
|
12 |
Fu E G, Caro M, Zepeda-Ruiz L A, et al. Surface effects on the radiation response of nanoporous Au foams [J]. Appl. Phys. Lett., 2012, 101: 191607
|
13 |
Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
|
14 |
Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
|
15 |
Mao S M, Shu S P, Zhou J, et al. Quantitative comparison of sink efficiency of Cu-Nb, Cu-V and Cu-Ni interfaces for point defects [J]. Acta Mater., 2015, 82: 328
|
16 |
Vattré A J, Abdolrahim N, Kolluri K, et al. Computational design of patterned interfaces using reduced order models [J]. Sci. Rep., 2014, 4: 6231
|
17 |
Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions [J]. Prog. Mater. Sci., 2015, 74: 125
|
18 |
Vetterick G A, Gruber J, Suri P K, et al. Achieving radiation tolerance through non-equilibrium grain boundary structures [J]. Sci. Rep., 2017, 7: 12275
|
19 |
Qin W J, Ren F, Doerner R P, et al. Nanochannel structures in W enhance radiation tolerance [J]. Acta Mater., 2018, 153: 147
|
20 |
Fan C, Li J, Fan Z, et al. In situ studies on the irradiation-induced twin boundary-defect interactions in Cu [J]. Metall. Mater. Trans., 2017, 48A: 5172
|
21 |
Tang X Z, Guo Y F, Fan Y, et al. Interstitial emission at grain boundary in nanolayered alpha-Fe [J]. Acta Mater., 2016, 105: 147
|
22 |
Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films [J]. Acta Mater., 2011, 59: 93
|
23 |
Hodge A M, Furnish T A, Shute C J, et al. Twin stability in highly nanotwinned Cu under compression, torsion and tension [J]. Scr. Mater., 2012, 66: 872
|
24 |
Demkowicz M J, Anderoglu O, Zhang X H, et al. The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu [J]. J. Mater. Res., 2011, 26: 1666
|
25 |
Yu K Y, Bufford D, Sun C, et al. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals [J]. Nat. Commun., 2013, 4: 1377
|
26 |
Li J, Yu K Y, Chen Y, et al. In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals [J]. Nano Lett., 2015, 15: 2922
|
27 |
Wang Y M, Sansoz F, Lagrange T, et al. Defective twin boundaries in nanotwinned metals [J]. Nat. Mater., 2013, 12: 697
|
28 |
Jiao S Y, Kulkarni Y. Radiation tolerance of nanotwinned metals—An atomistic perspective [J]. Comp. Mater. Sci., 2018, 142: 290
|
29 |
Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals [J]. Acta Mater., 2008, 56: 1126
|
30 |
Wang J, Huang H. Novel deformation mechanism of twinned nanowires [J]. Appl. Phys. Lett., 2006, 88: 203112.
|
31 |
Li N, Wang J, Misra A, et al. Twinning dislocation multiplication at a coherent twin boundary [J]. Acta Mater., 2011, 59: 5989
|
32 |
Chen Y X, Fu E G, Yu K Y, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
|
33 |
Fu E G, Misra A, Wang H, et al. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers [J]. J. Nucl. Mater., 2010, 407: 178
|
34 |
Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
|
35 |
Heinisch H L, Gao F, Kurtz R J. The effects of interfaces on radiation damage production in layered metal composites [J]. J. Nucl. Mater., 2004, 329-333: 924
|
36 |
Wang J, Misra A, Hirth J P. Shear response of 3 {112} twin boundaries in face-centered-cubic metals [J]. Phys. Rev., 2011, 83B: 064106
|
37 |
Yu K Y, Bufford D, Khatkhatay F, et al. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag [J]. Scr. Mater., 2013, 69: 385
|
38 |
Chen Y, Yu K Y, Liu Y, et al. Damage-tolerant nanotwinned metals with nanovoids under radiation environments [J]. Nat. Commun., 2015, 6: 7036
|
39 |
Li N, Wang J, Wang Y Q, et al. Incoherent twin boundary migration induced by ion irradiation in Cu [J]. J. Appl. Phys., 2013, 113: 023508
|
40 |
Borovikov V, Mendelev M I, King A H. Effects of solutes on the thermal stability of nanotwinned materials [J]. Philos. Mag., 2014, 94: 2875
|
41 |
Zhu H Y, Liu S, Liu Z R, et al. Tailoring the stability of {101¯2} twins in magnesium with solute segregation at the twin boundary and strain path control [J]. Comp. Mater. Sci., 2018, 152: 113
|
42 |
Fan C C, Xie D Y, Li J, et al. 9R phase enabled superior radiation stability of nanotwinned Cu alloys via in situ radiation at elevated temperature [J]. Acta Mater., 2019, 167: 248
|
43 |
Li J, Xie D Y, Xue S, et al. Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy [J]. Acta Mater., 2018, 151: 395
|
44 |
Tschopp M A, Solanki K N, Gao F, et al. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe [J]. Phys. Rev., 2012, 85B: 064108
|
45 |
Barr C M, Barnard L, Nathaniel J E, et al. Grain boundary character dependence of radiation-induced segregation in a model Ni-Cr alloy [J]. J. Mater. Res., 2015, 30: 1290
|
46 |
Jiang C, Swaminathan N, Deng J, et al. Effect of grain boundary stresses on sink strength [J]. Mater. Res. Lett., 2014, 2: 100
|
47 |
El-Atwani O, Nathaniel J E, Leff A C, et al. The role of grain size in He bubble formation: Implications for swelling resistance [J]. J. Nucl. Mater., 2017, 484: 236
|
48 |
Sun C, Zheng S, Wei C C, et al. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments [J]. Sci. Rep., 2015, 5: 7801
|
49 |
Samaras M, Derlet P M, Van Swygenhoven H, et al. Radiation damage near grain boundaries [J]. Philos. Mag., 2003, 83: 3599
|
50 |
Xu J, Liu J B, Li S N, et al. Self-healing properties of nanocrystalline materials: A first-principles analysis of the role of grain boundaries [J]. Phys. Chem. Chem. Phys., 2016, 18: 17930
|
51 |
Sun C, Song M, Yu K Y, et al. In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni [J]. Metall. Mater. Trans., 2013, 44A: 1966
|
52 |
Liu L L, Tang Z, Xiao W, et al. Self-healing mechanism of irradiation defects near Σ=11(113) grain boundary in copper [J]. Mater. Lett., 2013, 109: 221
|
53 |
Di C, Wang J, Chen T Y, et al. Defect annihilation at grain boundaries in alpha-Fe [J]. Sci. Rep., 2013, 3: 1450
|
54 |
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
|
55 |
Koch C C, Scattergood R O, Darling K A, et al. Stabilization of nanocrystalline grain sizes by solute additions [J]. J. Mater. Sci., 2008, 43: 7264
|
56 |
Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
|
57 |
Darling K A, Kecskes L J, Atwater M, et al. Thermal stability of nanocrystalline nickel with yttrium additions [J]. J. Mater. Res., 2013, 28: 1813
|
58 |
Du C C, Jin S B, Fang Y, et al. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance [J]. Nat. Commun., 2018, 9: 5389
|
59 |
Fang Y, Ge W, Yang T F, et al. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures [J]. Nanotechnology, 2018, 29: 494001
|
60 |
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
|
61 |
Barnes R S, Redding G B, Cottrbll A H. The observation of vacancy sources in metals [J]. Philos. Mag., 1958, 3A: 97
|
62 |
Chen D, Li N, Yuryev D, et al. Imaging the in-plane distribution of helium precipitates at a Cu/V interface [J]. Mater. Res. Lett., 2017, 5: 335
|
63 |
Misra A, Demkowicz M J, Zhang X, et al. The radiation damage tolerance of ultra-high strength nanolayered composites [J]. JOM, 2007, 59(9): 62
|
64 |
Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
|
65 |
Shao S, Wang J, Misra A, et al. Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces [J]. Sci. Rep., 2013, 3: 2448
|
66 |
Vattré A J, Demkowicz M J. Determining the Burgers vectors and elastic strain energies of interface dislocation arrays using anisotropic elasticity theory [J]. Acta Mater., 2013, 61: 5172
|
67 |
Hirth J P, Pond R C, Hoagland R G, et al. Interface defects, reference spaces and the Frank-Bilby equation [J]. Prog. Mater. Sci., 2013, 58: 749
|
68 |
Vattré A, Jourdan T, Ding H, et al. Non-random walk diffusion enhances the sink strength of semicoherent interfaces [J]. Nat. Commun., 2016, 7: 10424
|
69 |
Reed D J. A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects [J]. Rad. Eff., 1977, 31: 129
|
70 |
McPhie M G, Capolungo L, Dunn A Y, et al. Interfacial trapping mechanism of He in Cu-Nb multilayer materials [J]. J. Nucl. Mater., 2013, 437: 222
|
71 |
Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
|
72 |
Lach T G, Ekiz E H, Averback R S, et al. Role of interfaces on the trapping of He in 2D and 3D Cu-Nb nanocomposites [J]. J. Nucl. Mater., 2015, 466: 36
|
73 |
Demkowicz M J, Bhattacharyya D, Usov I, et al. The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces [J]. Appl. Phys. Lett., 2010, 97: 161903
|
74 |
Demkowicz M J, Misra A, Caro A. The role of interface structure in controlling high helium concentrations [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 101
|
75 |
Bollmann W. O-lattice calculation of an F.C.C.-B.C.C. interface [J]. Phys. Status Solidi, 1974, 21A: 543
|
76 |
Yuryev D V, Demkowicz M J. Computational design of solid-state interfaces using O-lattice theory: An application to mitigating helium-induced damage [J]. Appl. Phys. Lett., 2014, 105: 221601
|
77 |
Yang L X, Zheng S J, Zhou Y T, et al. Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites [J]. J. Nucl. Mater., 2017, 487: 311
|
78 |
Chen D, Li N, Yuryev D, et al. Self-organization of helium precipitates into elongated channels within metal nanolayers [J]. Sci. Adv., 2017, 3: eaao2710
|
79 |
So K P, Chen D, Kushima A, et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance [J]. Nano Energy, 2016, 22: 319
|
80 |
Wang X S, Li Q Q, Xie J, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates [J]. Nano Lett., 2009, 9: 3137
|
81 |
González R I, Valencia F, Mella J, et al. Metal-nanotube composites as radiation resistant materials [J]. Appl. Phys. Lett., 2016, 109: 033108
|
82 |
Si S Y, Li W Q, Zhao X L, et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene [J]. Adv. Mater., 2017, 29: 1604623
|
83 |
Kim Y, Baek J, Kim S, et al. Radiation resistant vanadium-graphene nanolayered composite [J]. Sci. Rep., 2016, 6: 24785
|
84 |
Huang H, Tang X B, Chen F D, et al. Radiation damage resistance and interface stability of copper-graphene nanolayered composite [J]. J. Nucl. Mater., 2015, 460: 16
|
85 |
Yang T L, Yang L, Liu H, et al. Ab initio study of stability and migration of point defects in copper-graphene layered composite [J]. J. Alloys Compd., 2017, 692: 49
|
86 |
Huang H, Tang X B, Chen F D, et al. Graphene damage effects on radiation-resistance and configuration of copper-graphene nanocomposite under irradiation: A molecular dynamics study [J]. Sci. Rep., 2016, 6: 39391
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|