|
|
基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制 |
朱健1, 张志豪1,2( ), 谢建新1,2 |
1 北京科技大学新材料技术研究院 北京 100083 2 北京科技大学材料先进制备技术教育部重点实验室 北京 100083 |
|
Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study |
ZHU Jian1, ZHANG Zhihao1,2( ), XIE Jianxin1,2 |
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
Jian ZHU,
Zhihao ZHANG,
Jianxin XIE.
Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. Acta Metall Sin, 2020, 56(12): 1592-1604.
[1] |
Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, A472: 198
|
[2] |
Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mater. Sci. Eng., 2011, A528: 5696
|
[3] |
Srivastava A, Joshi V, Shivpuri R, et al. A multi-layer coating architecture to reduce heat checking of die surfaces [J]. Surf. Coat. Technol., 2003, 163-164: 631
doi: 10.1016/S0257-8972(02)00690-4
|
[4] |
Zhang M L, Xing S M, Xin Q, et al. Abnormal failure analysis of H13 punches in steel squeeze casting process [J]. J. Iron Steel Res. Int., 2008, 15: 47
doi: 10.1016/S1006-706X(08)60124-7
|
[5] |
Sjöströ J, Bergström J. Thermal fatigue in hot-working tools [J]. Scand. J. Metall., 2005, 34: 221
doi: 10.1111/sjm.2005.34.issue-4
|
[6] |
Delagnes D, Rézaï-Aria F, Levaillant C. Influence of testing and tempering temperatures on fatigue behaviour, life and crack initiation mechanisms in a 5%Cr martensitic steel [J]. Procedia Eng., 2010, 2: 427
doi: 10.1016/j.proeng.2010.03.047
|
[7] |
Meng C, Zhou H, Tong X, et al. Comparison of thermal fatigue behaviour and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process [J]. Mater. Sci. Technol., 2013, 29: 496
doi: 10.1179/1743284712Y.0000000169
|
[8] |
Oliver E C, Withers P J, Daymond M R, et al. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel [J]. Appl. Phys., 2002, 74A: S1143
|
[9] |
Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
doi: 10.2355/isijinternational.43.438
|
[10] |
Van Slycken J, Verleysen P, Degrieck J, et al. High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels [J]. Metall. Mater. Trans., 2006, 37A: 1527
|
[11] |
Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron Steel, 2011, 46(6): 1
|
[11] |
(董 瀚, 曹文全, 时 捷等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(6): 1)
|
[12] |
Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
|
[13] |
Wang R M, Liu J L, Song Y J. Progress and applications of in situ transmission electron microscopy [J]. Physics, 2015, 44: 96
doi: 10.7693/wl20150205
|
[13] |
(王荣明, 刘家龙, 宋源军. 原位透射电子显微学进展及应用 [J]. 物理, 2015, 44: 96)
|
[14] |
Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium [J]. Acta Mater., 2012, 60: 3402
doi: 10.1016/j.actamat.2012.02.049
|
[15] |
Voisin T, Krywopusk N M, Mompiou F, et al. Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing [J]. Acta Mater., 2017, 138: 174
doi: 10.1016/j.actamat.2017.07.050
|
[16] |
Legros M, Gianola D S, Hemker K J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Mater., 2008, 56: 3380
doi: 10.1016/j.actamat.2008.03.032
|
[17] |
Manchuraju S, Kroeger A, Somsen C, et al. Pseudoelastic deformation and size effects during in situ transmission electron microscopy tensile testing of NiTi [J]. Acta Mater., 2012, 60: 2770
doi: 10.1016/j.actamat.2012.01.043
|
[18] |
Yao T T, Du K, Wang H L, et al. In situ scanning and transmission electron microscopy investigation on plastic deformation in a metastable β titanium alloy [J]. Acta Mater., 2017, 133: 21
doi: 10.1016/j.actamat.2017.05.018
|
[19] |
Zárubová N, Gemperlová J, Gemperle A, et al. In situ TEM observation of stress-induced martensitic transformations and twinning processes in CuAlNi single crystals [J]. Acta Mater., 2010, 58: 5109
doi: 10.1016/j.actamat.2010.05.046
|
[20] |
Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
doi: 10.1016/j.actamat.2005.09.015
|
[21] |
Beausir B, Fressengeas C, Gurao N P, et al. Spatial correlation in grain misorientation distribution [J]. Acta Mater., 2009, 57: 5382
doi: 10.1016/j.actamat.2009.07.035
|
[22] |
Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloy [J]. Acta Mater., 2012, 60: 7265
doi: 10.1016/j.actamat.2012.09.046
|
[23] |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
|
[24] |
Wang X L. Study on welding physical metallurgy behavior of high performance offshore engineering steel [D]. Beijing: University of Science and Technology Beijing, 2018
|
[24] |
(王学林. 高性能海洋工程用钢焊接物理冶金行为研究 [D]. 北京: 北京科技大学, 2018)
|
[25] |
Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, A704: 448
|
[26] |
Bachmann F, Hielscher R, Schaeben H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenom., 2010, 160: 63
doi: 10.4028/www.scientific.net/SSP.160
|
[27] |
Nyyssönen T, Peura P, Kuokkala V T. Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel [J]. Metall. Mater. Trans., 2018, 49A: 6426
|
[28] |
Chen Q Z, Chu W Y, Wang B Y, et al. In situ TEM observations of nucleation and bluntness of nano cracks in thin crystals of 310 stainless steel [J]. Acta Metall. Mater., 1995, 43: 4371
doi: 10.1016/0956-7151(95)00122-C
|
[29] |
Zhang Y, Chu W Y, Wang Y B, et al. TEM observation of brittle microcrack nucleation of intermetallic compounds [J]. Sci. China, 1994, 24A: 551
|
[29] |
(张 跃, 褚武扬, 王燕斌等. 金属间化合物脆性微裂纹形核的TEM观察 [J]. 中国科学, 1994, 24A: 551)
|
[30] |
Gao K W, Chen Q Z, Chu W Y, et al. Nucleation and propagation of microcracks in nanoscale cleavage [J]. Sci. China, 1994, 24A: 993
|
[30] |
(高克玮, 陈奇志, 褚武扬等. 纳米级解理微裂纹的形核和扩展 [J]. 中国科学, 1994, 24A: 993)
|
[31] |
Chen Q Z, Chu W Y, Xiao J M. In situ observation and study of nucleation of ductile microcracks [J]. Sci. China, 1994, 24A: 291
|
[31] |
(陈奇志, 褚武扬, 肖纪美. 韧断微裂纹形核的原位观察与研究 [J]. 中国科学, 1994, 24A: 291)
|
[32] |
Huang W K, Kong F Y. Microstructure and mechanical property of cold drawn high strength 00Cr18Ni10N stainless steel wire [J]. Acta Metall. Sin., 2009, 45: 275
|
[32] |
(黄文克, 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能 [J]. 金属学报, 2009, 45: 275)
|
[33] |
Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel [J]. Mater. Sci. Eng., 2017, A687: 200
|
[34] |
Li H F, Wang S G, Zhang P, et al. Crack propagation mechanisms of AISI 4340 steels with different strength and toughness [J]. Mater. Sci. Eng., 2018, A729: 130
|
[35] |
Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission [J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
|
[36] |
Li S C, Zhu G M, Kang Y L. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel [J]. J. Alloys Compd., 2016, 675: 104
doi: 10.1016/j.jallcom.2016.03.100
|
[37] |
Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta Mater., 2003, 51: 101
doi: 10.1016/S1359-6454(02)00353-1
|
[38] |
Wang X L, Wang Z Q, Ma X P, et al. Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure [J]. Mater. Charact., 2018, 140: 312
doi: 10.1016/j.matchar.2018.03.037
|
[39] |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
|
[40] |
Rancel L, Gómez M, Medina S F, et al. Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A530: 21
|
[41] |
Morito S, Saito H, Ogawa T. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ Int., 2005, 45: 91
doi: 10.2355/isijinternational.45.91
|
[42] |
Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
doi: 10.2355/isijinternational.43.410
|
[43] |
Wang J L, Madsen G K H, Drautz R. Grain boundaries in bcc-Fe: A density-functional theory and tight-binding study [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025008
doi: 10.1088/1361-651X/aa9f81
|
[44] |
Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
|
[45] |
Wang S H, Li J, Ge X, et al. Microstructural evolution and work hardening behavior of Fe-19Mn alloy containing duplex austenite and ε-martensite [J]. Acta Metall. Sin., 2020, 56: 311
|
[45] |
(王世宏, 李 健, 葛 昕等. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为 [J]. 金属学报, 2020, 56: 311)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|