|
|
316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为 |
彭剑1,2( ),高毅1,代巧2,3,王颖1,李凯尚1 |
1. 常州大学机械工程学院 常州 213164 2. 常州大学江苏省绿色过程装备重点实验室 常州 213164 3. 江苏理工学院机械工程学院 常州 213001 |
|
Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load |
Jian PENG1,2( ),Yi GAO1,Qiao DAI2,3,Ying WANG1,Kaishang LI1 |
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China 2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China 3. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China |
引用本文:
彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
Jian PENG,
Yi GAO,
Qiao DAI,
Ying WANG,
Kaishang LI.
Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. Acta Metall Sin, 2019, 55(6): 773-782.
[1] | Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693 | [1] | (张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693) | [2] | Li Q, Yan F K, Tao N R. Enhanced fatigue damage resistance of nanotwinned austenitic grains in a nanotwinned stainless steel [J]. Scr. Mater., 2017, 136: 59 | [3] | Xie X F, Ning D, Sun J. Strain-controlled fatigue behavior of cold-drawn type 316 austenitic stainless steel at room temperature [J]. Mater. Charact., 2016, 120: 195 | [4] | Mazánová V, ?korík V, Kruml T, et al. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel [J]. Int. J. Fatigue, 2017, 100: 466 | [5] | Xie X F, Jiang W C, Luo Y, et al. A model to predict the relaxation of weld residual stress by cyclic load: Experimental and finite element modeling [J]. Int. J. Fatigue, 2017, 95: 293 | [6] | Zhang W Y, Jiang W C, Zhao X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation [J]. Int. J. Fatigue, 2018, 109: 182 | [7] | Kang G Z, Gao Q, Yang X J. Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: Experiments and simulations [J]. Int. J. Non-Linear Mech., 2004, 39: 843 | [8] | De P S, Kundu A, Chakraborti P C. Effect of prestrain on tensile properties and ratcheting behaviour of Ti-stabilised interstitial free steel [J]. Mater. Des., 2014, 57: 87 | [9] | Chen X H, Chen X, Chen H F. Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N [J]. Steel Compos. Struct., 2018, 27: 89 | [10] | Abdollahi E, Chakherlou T N. Numerical and experimental study of ratcheting in cold expanded plate of Al‐alloy 2024‐T3 in double shear lap joints [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 41 | [11] | Lin Y C, Chen X M, Chen G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation [J]. J. Alloys Compd., 2011, 509: 6838 | [12] | Lin Y C, Chen X M, Liu Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy [J]. Int. J. Fatigue, 2013, 48: 122 | [13] | Rajpurohit R S, Rao G S, Chattopadhyay K, et al. Ratcheting fatigue behavior of Zircaloy-2 at room temperature [J]. J. Nucl. Mater., 2016, 477: 67 | [14] | Zhu S P, Lei Q, Wang Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 1343 | [15] | Ding J, Kang G Z , Zhu Y L, et al. Finite element analysis on bending fretting fatigue of 316L stainless steel considering ratchetting and cyclic hardening [J]. Int. J. Mech. Sci., 2014, 86: 26 | [16] | Facheris G, Pham M S, Janssens K G F, et al. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue [J]. Mater. Sci. Eng., 2013, A587: 1 | [17] | Luo H L, Kang G Z, Kan Q H, et al. Experimental investigation on the heterogeneous ratchetting of SUS301L stainless steel butt weld joint during uniaxial cyclic loading [J]. Int. J. Fatigue, 2017, 105: 169 | [18] | Kang G Z, Liu Y J, Li Z. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing [J]. Mater. Sci. Eng., 2006, A435-436: 396 | [19] | Yan Z F, Wang D H, Wang W X, et al. Ratcheting strain and microstructure evolution of AZ31B magnesium alloy under a tensile-tensile cyclic loading [J]. Materials, 2018, 11: 513 | [20] | Yuan X Y, Yu W W, Fu S C, et al. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel [J]. Mater. Sci. Eng., 2016, A677: 193 | [21] | Tian J, Yang Y, Zhang L P, et al. Ratcheting behavior of SA508-3 steel at elevated temperature: Experimental observation and simulation [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 822 | [22] | Kan Q H, Kang G Z, Zhang J, et al. Experimental study on non-proportionally multiaxial time-dependent cyclic deformations of ss304 stainless steel at high temperature [J]. Acta Metall. Sin., 2005, 41: 963 | [22] | (阚前华, 康国政, 张 娟等. SS304不锈钢高温非比例多轴加载下时相关循环变形行为的实验研究 [J]. 金属学报, 2005, 41: 963) | [23] | Lin Y C, Liu Z H, Chen X M, et al. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings [J]. Mater. Sci. Eng., 2013, A573: 234 | [24] | Lim C B, Kim K S, Seong J B. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress [J]. Int. J. Fatigue, 2009, 31: 501 | [25] | Lin Y C, Liu Z H, Chen X M, et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings [J]. Comput. Mater. Sci., 2013, 73: 128 | [26] | Paul S K, Stanford N, Taylor A, et al. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel [J]. Int. J. Fatigue, 2015, 80: 341 | [27] | Liang T, Chen X, Cheng H C, et al. Thermal aging effect on the ratcheting-fatigue behavior of Z2CND18.12N stainless steel [J]. Int. J. Fatigue, 2015, 72: 19 | [28] | Wang W, Zheng X T, Yu J Y, et al. Time-dependent ratcheting of 35CrMo structural steel at elevated temperature considering stress rates [J]. Mater. High Temp., 2016, 34: 172 | [29] | Peng J, Zhou C Y, Dai Q, et al. Fatigue and ratcheting behaviors of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2014, A590: 329 | [30] | Li H, Wen M J, Chen G, et al. Constitutive modeling for the anisotropic uniaxial ratcheting behavior of Zircaloy-4 alloy at room temperature [J]. J. Nucl. Mater., 2013, 443: 152 | [31] | Kang G Z, Liu Y J. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature [J]. Mater. Sci. Eng., 2008, A472: 258 | [32] | Dutta K, Ray K K. Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy [J]. Mater. Sci. Eng., 2012, A540: 30 | [33] | Kang G Z, Dong Y W, Wang H, et al. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation [J]. Mater. Sci. Eng., 2010, A527: 5952 | [34] | Dutta K, Kishor R, Sahu L, et al. On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A660: 47 | [35] | Gaudin C, Feaugas X. Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses [J]. Acta Mater., 2004, 52: 3097 | [36] | Shao C W, Shi F, Li X W. Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A667: 208 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|