Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 599-606    DOI: 10.11900/0412.1961.2015.00490
  论文 本期目录 | 过刊浏览 |
800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*
王家贞,王俭秋(),韩恩厚
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室, 沈阳 110016
CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃
Jiazhen WANG,Jianqiu WANG(),En-Hou HAN
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
Jiazhen WANG, Jianqiu WANG, En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. Acta Metall Sin, 2016, 52(5): 599-606.

全文: PDF(871 KB)   HTML
摘要: 

采用动电位极化曲线, 电化学阻抗谱(EIS), SEM, XPS等分析手段研究了800合金在300 ℃ NaOH和乙醇胺(ETA)溶液中的腐蚀行为. 结果表明, ETA的添加降低合金的腐蚀电流密度, 增大了氧化膜的膜层电阻. 无论是否添加ETA, 800合金均为双层膜结构. 未添加ETA时,合金氧化膜外层富Ni, ETA添加后氧化膜外层富Cr. ETA的添加提高了氧化膜中Cr的富集程度, 促进了铬氧化物的形成, 增强了800合金氧化膜的保护性.

关键词 800合金乙醇胺动电位极化曲线氧化膜    
Abstract

Many components in secondary side of pressurized water reactors (PWRs) are made of carbon steels and low alloy steels. The corrosion products produced by the flow accelerated corrosion (FAC) of these components can deposite on the surface of steam generator (SG) tubes and decrease the heat transfer efficiency of SG tubes. Moreover, the enrichment of foreign ions (e.g. Cl- and Pb2+) occurs with the sedimentation of corrosion products and causes the local environment degradation, and thus accelerates the failure of SG tubes. In order to decrease the FAC of carbon steels and low alloy steels, pH controllers are often added to adjust the pH value of secondary water. The water chemistry environment of secondary side in PWRs has experienced various treatment techniques, such as phosphate treatment, all volatile treatment (AVT), morpholine (MPH) treatment, ethanolamine (ETA) treatment, and boric acid treatment. In comparision with AVT, ETA can significantly reduce the concentration of Fe in the steam-water phase region and water supply system because of its higher alkalinity and lower molar concentration in feedwater. Due to the high resistance to corrosion and stress corrosion cracking in high temperature and high pressure water, alloy 800 is often used as steam generator tubes in nuclear power plants and thus becomes increasingly attractive among researchers. However, few studies focus on the effect of ETA on the corrosion behavior of alloy 800 in high temperature and high pressure water. This work mainly aims to investigate the corrosion behavior of alloy 800 in NaOH and ETA solutions at 300 ℃ by potentiodynamic polarization curve, electrochemical impedance spectra (EIS), SEM and XPS. The electrochemical results demonstrate that the addition of ETA decreases the current density of anodic and cathodic reactions, and increases the corrosion potential of alloy 800. Besides, ETA addition significantly increases the resistance of inner oxide layer and makes the oxide film more compact, which increases the film resistance of alloy 800 in high temperature water. Through the morphology observation and composition analysis, it is found that ETA addition can promote the formation of Cr-rich layer and increase the ratio of chromium in the oxide films although the deposition of magnetite is enhanced on the surface of alloy 800. For stainless steels and nickel-based alloys in high temperature water, the Cr-rich oxide layer can inhibit the diffusion process of O and metal ions, and reduces the corrosion rates of alloys. Therefore, the corrosion resistance of alloy 800 is enhanced after ETA is added in high temperature water.

Key wordsalloy 800    ethanolamine    potentiodynanic polarization curve    oxide film
收稿日期: 2015-09-19     
基金资助:* 国家科技重大专项项目2011ZX06004-009和国家重点基础研究发展计划项目2011CB610500资助
图1  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后的动电位极化曲线
图2  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后的EIS谱
Solution Rs R1 CPE1 n1 CPE2 n2 R2
kΩcm2 kΩcm2 mSs-ncm-2 mSs-ncm-2 kΩcm2
NaOH 11.95 1.71 0.277 0.72 0.995 0.48 17.78
ETA 15.55 2.15 0.267 0.70 0.862 0.53 26.59
表1  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后的EIS拟合结果
图3  拟合EIS谱的等效电路图
图4  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后氧化膜表面SEM像
图5  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后氧化膜XPS结果
图6  800合金在300 ℃ NaOH溶液中浸泡96 h后表面氧化膜XPS分峰结果
图7  800合金在300 ℃ ETA溶液中浸泡96 h后表面氧化膜XPS分峰结果
图8  800合金在300 ℃ NaOH和ETA溶液中浸泡96 h后氧化膜的O2-/OH-比值
图9  800合金氧化膜中不同Cr组分的分布
[1] Staehle R W, Gorman J A.Corrosion, 2003; 59: 931
[2] Li X H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[2] (郦晓慧. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[3] Pandey M D, Datla S, Tapping R L, Lu Y C.Nucl Eng Des, 2009; 239: 1862
[4] Sui G, Titchmarsh J M, Heys G B, Congleton J.Corros Sci, 1997; 39: 565
[5] Ziemniak S E, Guilmette P A, Turcotte R A, Tunison H M.Corros Sci, 2008; 50: 449
[6] Le Canut J M, Maximovitch S, Dalard F. J Nucl Mater, 2004; 334: 13
[7] Wang J Q, Li X H, Huang F, Zhang Z M, Wang J Z, Staehle R W.Corrosion, 2014; 70: 598
[8] Huang F, Wang J Q, Han E-H, Ke W.Corros Sci, 2013; 76: 52
[9] Staehle R W, Gorman J A.Corrosion, 2004; 60: 115
[10] Staehle R W, Gorman J A.Corrosion, 2004; 60: 5
[11] Shutikov A V, Ivanov V N, Tyapkov V F, Yerpylyova S F, Bykova V V.Therm Eng, 2008; 55: 402
[12] Tao J. Master Thesis, Shanghai Jiaotong University, 2005
[12] (陶钧. 上海交通大学硕士学位论文, 2005)
[13] Li Q. Master Thesis, Harbin Engineering University, 2005
[13] (李强. 哈尔滨工程大学硕士学位论文, 2005)
[14] Zhu Z P, Zhao Y F, Zhou Y, Guo X C, Deng Y P.Corros Sci Prot Technol, 2012; 24: 285
[14] (朱志平, 赵永福, 周瑜, 郭小翠, 邓奕鹏. 腐蚀科学与防护技术, 2012; 24: 285)
[15] Wang J Z, Wang J Q.J Mater Sci Technol, 2015; 31: 1039
[16] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 908
[17] Jonscher A K.Phys Status Solidi, 1975; 32A: 665
[18] Liu X H, Wu X Q, Han E-H.Acta Metall Sin, 2014; 50: 64
[18] (刘侠和, 吴欣强, 韩恩厚. 金属学报, 2014; 50: 64)
[19] Bénézeth P, Wesolowski D, Palmer D, Machesky M.J Solution Chem, 2009; 38: 925
[20] Turner C W, Klimas S J.Reprot, TR-108004, Palo Alto: EPRI, 1997
[21] Turner C W, Guzonas D D, Klimas S J.Reprot, TR-110083, Palo Alto: EPRI, 1999
[22] Sui G, Titchmarsh J M, Heys G B, Congleton J.Corros Sci, 1997; 39: 565
[23] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[24] Robertson J.Corros Sci, 1991; 32: 443
[25] Dieckmann R, Mason T O, Hodge J D, Schmalzried H.Ber Bunsenges Physik Chem, 1978; 82: 778
[26] Dieckmann R.Solid State Ionics, 1984; 12: 1
[27] Calinski C, Strehblow H H.J Electrochem Soc, 1989; 136: 1328
[28] Zhang Z M, Wang J Q, Han E-H, Ke W.Corros Sci, 2011; 53: 3623
[29] Huang F, Wang J Q, Han E-H, Ke W.J Mater Sci Technol, 2012; 28: 562
[30] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P.Electrochim Acta, 2004; 49: 3957
[31] Biesinger M C, Brown C, Mycroft J R, Davidson R D, McIntyre N S.Surf Interface Anal, 2004; 36: 1550
[32] Pratt A R, McIntyre N S.Surf Interface Anal, 1996; 24: 529
[33] Sun H, Wu X Q, Han E-H.Corros Sci, 2009; 51: 2840
[34] Sun H, Wu X Q, Han E-H.Corros Sci, 2009; 51: 2565
[35] Huang J B, Wu X Q, Han E-H.Corros Sci, 2010; 52: 3444
[36] Liu X H, Wu X Q, Han E-H.Corros Sci, 2011; 53: 3337
[37] Stellwag B.Corros Sci, 1998; 40: 337
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[10] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[13] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[14] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[15] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.