Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1423-1431    DOI: 10.11900/0412.1961.2016.00084
  本期目录 | 过刊浏览 |
等离子喷焊原位生成TiC硬质增强镍基耐磨层组织与性能*
徐红勇1,王文权1,黄诗铭2,程祥霞3,任美璇4
1 吉林大学材料科学与工程学院汽车材料教育部重点实验室, 长春 1300222 大连交通大学材料科学与工程学院, 大连 1160283 同济大学材料科学与工程学院, 上海 2000924 东北电力大学电力工程学院, 吉林 132012
MICROSTRUCTURES AND PROPERTIES OF Ni-BASEDWEAR RESISTANT LAYERS REINFORCED BYTiC GENERATED FROM IN SITU PLASMASPRAY WELDING
Hongyong XU1,Wenquan WANG1,Shiming HUANG2,Xiangxia CHENG3,Meixuan REN4
1 Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3 School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
4 School of Electrical Engineering, Northeast Dianli University, Jilin 132012, China
引用本文:

徐红勇,王文权,黄诗铭,程祥霞,任美璇. 等离子喷焊原位生成TiC硬质增强镍基耐磨层组织与性能*[J]. 金属学报, 2016, 52(11): 1423-1431.
Hongyong XU, Wenquan WANG, Shiming HUANG, Xiangxia CHENG, Meixuan REN. MICROSTRUCTURES AND PROPERTIES OF Ni-BASEDWEAR RESISTANT LAYERS REINFORCED BYTiC GENERATED FROM IN SITU PLASMASPRAY WELDING[J]. Acta Metall Sin, 2016, 52(11): 1423-1431.

全文: PDF(2115 KB)   HTML
摘要: 

通过等离子喷焊NiCrBSi+Ti混合粉末制备TiC硬质增强镍基复合耐磨层, 利用OM, SEM, XRD及EDS研究了喷焊层微观组织、物相及元素组成特征, 并利用显微硬度仪及磨料磨损试验机对喷焊层显微硬度及耐磨料磨损性能进行测试. 结果表明, NiCrBSi+Ti混合粉末喷焊层主要包括由保留有共晶组织形态的(γ-Ni+β1-Ni3Si)与过共析组织(α-Fe+FeNi3)组成的基体相, 以及镶嵌于基体中的M7C3和M23C6等硬质相; CrB弥散分布于喷焊层中; 原位生成的TiC一部分作为M7C3和M23C6等后析出相的形核核心, 一部分以细小颗粒(<1 μm)弥散于基体中, 部分甚至偏聚为大尺寸TiC (>1 μm)块体. Ti的加入, 显著细化了喷焊层组织, Ti添加量为6%时, 喷焊层性能最好, 显微硬度可达800 HV0.5, 磨损质量约为14.5 mg, 耐磨性为纯NiCrBSi喷焊层的2倍以上.

关键词 TiC,等离子喷焊,原位生成,组织与性能    
Abstract

Generally, wear is one of the main failure mechanisms for mold steel. The heavy financial loss will often occur if molds are out of service due to their hard manufacturing process and high cost of metal materials. Therefore, mold repairing is urgent and critical if they fail to function. Ni-matrix wear resistant composited layers reinforced by TiC generated from in situ plasma spray welding NiCrBSi+Ti powders were prepared. The analysis instruments of OM, SEM, XRD and EDS were used to study the microstructural characterization, phase identification and chemical compositions of the layers. And the microhardness and wear resistance were tested using Vickers hardness tester and abrasion tester, respectively. The investigations demonstrated that the layers were mainly composed of basic phases (γ-Ni+β1-Ni3Si) with eutectic features and hypereutectoid (α-Fe+FeNi3) structures, in which hard phases M7C3 and M23C6 were embedded in the matrix. The phase CrB was distributed uniformly in the layers. One part of TiC generated from in situ reaction acted as the nucleation of the chromium compounds precipitates M7C3 and M23C6. The other part of TiC was also distributed in the base with the fine particles (<1 μm) and even bigger size (>1 μm). Ti percentage rising, the microstructures of plasma spray welding layers were refined and the phase M23C6 increased while M7C3 decreased. When the Ti addition reached 6%, the layers had better performance with microhardness of 800 HV0.5. The wear mass loss of layers was 14.5 mg, which were more than 2 times of NiCrBSi layer.

Key wordsTiC,    plasma    spray    welding,    in    situ    generation,    microstructure    and    property
收稿日期: 2016-03-11     
基金资助:* 吉林省科技厅资助项目20100328
图1  NiCrBSi和Ti粉末的SEM像及EDS分析结果
Point Atomic fraction / % Phase
C Cr Ni Fe Si
A 30.96 36.38 3.88 28.32 0.46 (Cr, Fe)7C3
B 13.51 32.82 9.22 43.51 0.94 (Fe, Cr)23C6
C 10.17 83.93 1.06 4.85 - Cr23C6
D 37.71 39.24 7.10 15.95 - (Cr, Fe)7C3
E 26.71 66.62 - 6.67 - Cr7C3
F 2.57 4.73 59.53 24.96 8.32 FeNi3
G 6.32 3.36 63.33 10.31 16.68 (γ-Ni+β1-Ni3Si)
表1  图3中各点微区EDS分析结果
图2  NiCrBSi粉末及No.1喷焊层的XRD谱
图3  No.1喷焊层的SEM像和EDS分析
图4  No.2~No.6喷焊层的XRD谱
Point Atomic fraction / % Phase
C Ti Cr Ni Fe Si Mo V
H 25.54 1.03 4.63 9.33 55.28 2.93 0.61 0.65 α-Fe
I 13.37 0.42 28.27 10.90 47.04 - - - (Fe, Cr)23C6
J 32.32 0.51 23.20 5.54 38.43 - - - (Fe, Cr)7C3
K 18.59 4.87 67.51 4.54 4.48 - - - Cr23C6
L 11.75 2.67 5.24 43.78 29.63 6.93 - - (α-Fe+FeNi3)
M 8.69 3.56 3.42 50.03 16.25 18.05 - - (γ-Ni+β1-Ni3Si)
N 29.37 53.35 5.43 6.82 5.03 - - - TiC
表2  图5中各点微区EDS分析结果
图5  No.2喷焊层不同位置的SEM像及EDS分析
图6  No.4喷焊层的SEM像及EDS分析
图7  No.3~No.6喷焊层中部的SEM像与EDS分析
图8  不同喷焊层显微硬度及磨损质量
图9  基材及不同喷焊层的磨损形貌
[1] Kulkarni K, Srivastava A, Shivpuri R, Bhattacharya R, Dixit S, Bhat D.Surf Coat Technol, 2002; 149: 171
[2] Srivastava A, Joshi V, Shivpuri R.Wear, 2004; 256: 38
[3] Jacobsen S D, Hinrichs R, Baumvol I J R, Castellano G, Vasconcellos M A Z.Surf Coat Technol, 2015; 270: 266
[4] Lei Y W, Sun R L, Tang Y, Niu W.Opt Laser Eng, 2015; 66: 181
[5] Wang D, Li H, Yang H, Ma J, Li G.Chin J Aeronaut, 2014; 27: 1002
[6] Telasang G, Majumdar J D, Padmanabham G, Manna I.Surf Coat Technol, 2015; 261: 69
[7] Hou Q Y, Gao J S, Zhou F.Surf Coat Technol, 2005; 194: 238
[8] Cho T Y, Yoon J H, Cho J Y, Joo Y K, Kang J H, Zhang S H, Chun H G, Hwang S Y, Kwon S C.Surf Coat Technol, 2009; 203: 3250
[9] Xu H Y, Wang W Q, Huang S M, Fang L Q.Trans Mater Heat Treat, 2015; 36: 221
[9] (徐红勇, 王文权, 黄诗铭, 方丽琴. 材料热处理学报, 2015; 36: 221)
[10] Ingo G M, Kaciulis S, Mezzi A, Valente T, Casadei F, Gusmano G. Electrochim Acta, 2005; 50: 4531
[11] Xiao L S, Yan D R, He J N, Lin Z, Dong Y C, Zhang J X, Li X Z.Appl Surf Sci, 2007; 253: 7535
[12] Mao Z P, Wang J, Sun B D, Yao C W.J Therm Spray Technol, 2009; 18: 563
[13] Borgioli F, Galvanetto E, Galliano F P, Bacci T.Wear, 2006; 260: 832
[14] Rosu R A, Serban V A, Bucur A I, Dragos U.Appl Surf Sci, 2012; 258: 3871
[15] Shahien M, Yamada M, Yasui T, Fukumoto M.J Therm Spray Technol, 2011; 20: 580
[16] Liu H Y, Huang J H, Yin C F, Zhang J G, Lin G B.Ceram Int, 2007; 33: 827
[17] Shanmugavelayutham G, Yano S, Kobayashi A.Vacuum, 2006; 80: 1336
[18] Ye F X, Tsumura T, Nakata K, Ohmori A.Mater Sci Eng, 2008; B148: 154
[19] Culha O, Tekmen C, Toparli M, Tsunekawa Y.Mater Des, 2010; 31: 533
[20] Tekmen C, Ozdemir I, Fritsche G, Tsunekawa Y.Surf Coat Technol, 2009; 203: 2046
[21] Sahu J K, Sahoo C K, Masanta M.Mater Manuf Process, 2015; 30: 736
[22] Isalgue A, Fernandez J, Cinca N, Villa M, Guilemany J M.J Alloys Compd, 2013; 577: S277
[23] Wang W F, Wang M C, Sun F J.Heat Treat Met, 2009; 34(2): 65
[23] (王维夫, 王茂才, 孙凤久. 金属热处理, 2009; 34(2): 65)
[24] Liu L, Fu H Z, Shi Z X.Acta Metall Sin, 1989; 25: 48
[24] (刘林, 傅恒志, 史正兴. 金属学报, 1989; 25: 48)
[1] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[2] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[3] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[4] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[5] 许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591.
[6] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[7] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[8] 张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
[9] 吴长军, 朱晨露, 苏旭平, 刘亚, 彭浩平, 王建华. TiCu/Zn界面反应周期层片结构形成的热力学和动力学研究*[J]. 金属学报, 2014, 50(8): 930-936.
[10] 王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征[J]. 金属学报, 2013, 49(2): 221-228.
[11] 秦国梁 苏玉虎 王术军. 铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
[12] 倪自飞 孙扬善 薛烽 白晶. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J]. 金属学报, 2010, 46(8): 935-940.
[13] 翟秋亚; 梁存琨; 成军; 徐锦锋; 刘军平; 薛群胜 . 铜基微晶钎料真空钎焊25Cr3MoA/YG6[J]. 金属学报, 2008, 44(9): 1136-1140 .
[14] 吴钱林; 孙扬善; 薛烽; 周健 . 电渣重熔对TiC强化2Cr13不锈钢力学性能和断口的影响[J]. 金属学报, 2008, 44(6): 745-750 .
[15] 刘慧敏; 何建平; 杨滨; 张济山 . 半固态喷射沉积TiCp/7075铝合金的晶粒长大规律[J]. 金属学报, 2006, 42(2): 158-162 .