Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1294-1304    DOI: 10.11900/0412.1961.2014.00110
  本期目录 | 过刊浏览 |
牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响
穆鑫, 魏洁, 董俊华(), 柯伟
中国科学院金属研究所, 沈阳 110016
THE EFFECT OF SACRIFICIAL ANODE ON CORRO- SION PROTECTION OF Q235B STEEL IN SIMULATED TIDAL ZONE
MU Xin, WEI Jie, DONG Junhua(), KE Wei
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

穆鑫, 魏洁, 董俊华, 柯伟. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50(11): 1294-1304.
Xin MU, Jie WEI, Junhua DONG, Wei KE. THE EFFECT OF SACRIFICIAL ANODE ON CORRO- SION PROTECTION OF Q235B STEEL IN SIMULATED TIDAL ZONE[J]. Acta Metall Sin, 2014, 50(11): 1294-1304.

全文: PDF(6178 KB)   HTML
摘要: 

利用自制的腐蚀实验槽模拟实海潮差, 并借助电化学工作站原位监测受牺牲阳极保护的Q235B钢在潮差区间不同位置的电极电位. 结果表明, 在牺牲阳极保护下, Q235B钢长尺试样在潮差区间具有一定的保护效果, 腐蚀程度随潮位的降低而减轻, 被保护的高度随着牺牲阳极面积的增大而升高; 决定牺牲阳极保护效果好坏的主要是试样曝露在空气中以后的表面电流电阻降(IR降)大小, IR降越小保护效果越好. 片面增加牺牲阳极的面积虽可提高钢铁构件的保护效果, 但有时会使构件的一部分处于过保护状态, 牺牲阳极和其他保护措施有效配合是解决潮差区腐蚀问题的途径.

关键词 室内模拟海洋潮差腐蚀低碳钢牺牲阳极电极电位    
Abstract

The environment of the tidal zone is very complex. The interactions of dry-wet alternation and sea erosion lead to serious corrosion of steel structures, which makes it difficult to adopt protective methods. Therefore, it is of great significance to study the corrosion and protection methods of steel in tidal zone. At present, the widely used protection method in tidal zone is coating which is effective in short term. However, it is easy to cause blister failure during the long-term service process, and it will increase the maintenance cost. Sacrificing anode protection is the most common method used in the seawater environment due to its advantages such as low cost, simple operation, no external current, no interference with adjacent metal facilities, good current dispersion ability, easy management and maintenance and high efficiency, etc.. However, in the tidal zone, sacrificial anode protective is effective only when the protected metal is in seawater immersion state. After the tide receded, the protected metal exposes in air. At this time, the current loop is destroyed, and the sacrificial anode protection effect is weakened. Therefore, it is commonly known that the sacrificial anode protection method can not protect the whole tidal zone against corrosion. At present, the corrosion process and mechanism of steel structures under sacrificial anode protection in the tidal zone are not clear. In order to study the corrosion mechanism of sacrificial anode protection, a corrosion experimental trough was designed to simulate the tidal zone and immersion zone. The electrode potential of Q235B mild steel under different protecting area of sacrificial anode in it was monitored in situ by the electrochemical workstation. The results show that under the sacrificial anode protection, the long scale specimen of Q235B steel is protected well, the corrosion degree in the tidal zone gradually reduces with the decrease of tide level, and the protected height increases with the increase of sacrificial anode area. Protective effect of sacrificial anode is mainly decided by the IR drop of specimen surface when the steel structures are exposed in the air, the smaller value of IR drop, the better protection effect. However, although the protection effect of steel structures can be improved by increasing the metal area of sacrificial anode, sometimes a part of steel structure may be in the state of excessive protection. The effective way to solve the corrosion problem of tidal zone needs to cooperate the sacrificial anode with other protective methods.

Key wordslaboratory simulation    tidal corrosion    mild steel    sacrificial anode    electrode potential
收稿日期: 2014-08-08     
ZTFLH:  TG172.5  
基金资助:* 国家自然科学基金项目51131007, 国家重点基础研究发展计划项目2014CB643300和国家材料环境腐蚀平台项目资助收到初稿日期: 2014-03-13, 收到修改稿日期: 2014-08-08
作者简介: null

穆 鑫, 男, 1983年生, 博士生

图1  Q235B钢未施加和施加牺牲阳极保护腐蚀60 d的表面宏观形貌
图2  Q235B钢在牺牲阳极保护下不同测试位置腐蚀60 d的微观形貌
图3  Q235B钢未施加和施加牺牲阳极保护腐蚀60 d后不同位置的XRD谱
图4  潮位随时间变化曲线
图5  Q235B钢未施加和施加牺牲阳极保护不同位置处的电位随腐蚀时间的变化曲线
Specimen Stage Position a Position b Position c Position d
No.0 Initial stage -0.82~-0.68 -0.82~-0.62 -0.84~-0.75 -0.85~-0.80
Later stage -0.77~-0.63 -0.82~-0.72 -0.84~-0.77 -0.84~-0.79
Variation trend Up 0.05 Down 0.1 Down 0.02 Up 0.01
No.1 Initial stage -1.05~-0.77 -1.07~-0.72 -1.07~-0.70 -1.07~-1.05
Later stage -1.02~-0.67 -1.09~-0.72 -1.09~-0.95 -1.10~-0.98
Variation trend Up 0.1 Down 0.02 Down 0.25 Down 0.07
No.2 Initial stage -1.07~-0.75 -1.08~-0.72 -1.08~-0.70 -1.08~-1.06
Later stage -1.05~-0.70 -1.10~-0.75 -1.11~-0.95 -1.11~-1.03
Variation trend Up 0.05 Down 0.03 Down 0.25 Down 0.03
No.3 Initial stage -1.10~-0.73 -1.12~-0.70 -1.12~-0.80 -1.12~-1.11
Later stage -1.10~-0.72 -1.12~-0.85 -1.12~-0.95 -1.12~-1.11
Variation trend Up 0.01 Down 0.15 Down 0.15 Unchanged
表1  潮差区间不同部位电位变化范围及整体变化趋势
图6  腐蚀至第20 d测得的实验槽潮位变化曲线及Q235B钢在未施加(No.0)和施加(No.3)牺牲阳极保护下不同位置的电位变化曲线
图7  Q235B在牺牲阳极保护下(Nos.1~3)平均腐蚀速率与实测裸钢(No.0)腐蚀速率[9]对比结果
[1] Ke W. Chinese Corrosion Investigation Report. Beijing: Chemical Industry Press, 2003: 7
[1] (柯 伟. 中国腐蚀调查报告. 北京: 化学工业出版社, 2003: 7)
[2] Baeckmann W, Schwenk W, Prinz W. Handbook of Cathodic Corrosion Protection. Houstion, TX: Gulf Professional Publishing, 1997: 9
[3] Hu S X. Cathodic Protection Handbook. Beijing: Chemical Industry Press, 1999: 56
[3] (胡士信. 阴极保护手册. 北京: 化学工业出版社, 1999: 56)
[4] Kuhn R J. Proc Am Pet Inst, 1933; 14(2): 13
[5] Hou B R. Technology of Corrosion Control of Marine Steel Structure in Splash Zone. Beijing: Science Press, 2011: 34
[5] (侯宝荣. 海洋钢结构浪花飞溅区腐蚀控制技术. 北京: 科学出版社, 2011: 34)
[6] Bertolini L, Redaelli E. Corros Sci, 2009; 51: 2218
[7] Bertolini L, Gastaldi M, Pedeferri M, Redaelli E. Corros Sci, 2002; 44: 1497
[8] Cao C N. Principle of Corrosion Electrochemistry. Beijing: Chemical Industry Press, 2004: 106
[8] (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2004: 106)
[9] Mu X, Wei J, Dong J H, Ke W. Acta Metall Sin, 2012; 48: 420
[9] (穆 鑫, 魏 洁, 董俊华, 柯 伟. 金属学报, 2012; 48: 420)
[10] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. Corros Sci, 1994; 36: 283
[11] Wang S T, Yang S W, Gao K W, He X L. Int J Miner Metall Mater, 2009; 16: 58
[12] Möller H, Boshoff E T, Froneman H. J South Afr Inst Min Metall, 2006; 106: 585
[13] Lee R, Ambrose J. Corrosion, 1988; 44: 887
[14] Rossi S, Bonora P, Pasinetti R, Benedetti L, Draghetti M, Sacco E. Corrosion, 1998; 54: 1018
[15] Deslouis C, Festy D, Gil O, Maillot V, Touzain S, Tribollet B. Electrochim Acta, 2000; 45: 1837
[16] Akamine K, Kashiki I. Corros Eng Sci Technol, 2002; 51: 496
[17] Neville A, Morizot A P. J Cryst Growth, 2002; 243: 490
[18] Akamine K, Kashiki I. Corros Eng Sci Technol, 2003; 52: 401
[19] Barchiche C, Deslouis C, Gil O, Joiret S, Refait P, Tribollet B. Electrochim Acta, 2009; 54: 3580
[20] Hou B R, Zhang J L, Sun H Y, Li Y, Xiang B. Br Corros J, 2001; 36: 310
[21] Chen N Y,Wei D B,Li Y M. Fundamentals of Electromagnetic Field and Electromagnetic Wave Theory. Beijing: China Railway Press, 2001: 39
[21] (陈乃云,魏东北,李一玫. 电磁场与电磁波理论基础. 北京: 中国铁道出版社, 2001: 39)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[4] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[5] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[6] 赵林, 穆鑫, 董俊华, 伍立坪, 王长罡, 柯伟. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53(11): 1445-1452.
[7] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.
[8] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[9] 谭向虎,单际国,任家烈. Cr层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751-756.
[10] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[11] 侯自勇 许云波 吴迪. 超快速退火下超低碳钢的再结晶行为研究[J]. 金属学报, 2012, 48(9): 1057-1066.
[12] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[13] 穆鑫,魏洁,董俊华,柯伟. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48(4): 420-426.
[14] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[15] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.