Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 145-151    DOI: 10.3724/SP.J.1037.2010.00426
  论文 本期目录 | 过刊浏览 |
海水飞溅区Ni-Cu-P钢的锈层和耐点蚀性能研究
曹国良 李国明 陈珊 常万顺 陈学群
海军工程大学理学院化学与材料系, 武汉 430033
STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE
CAO Guoliang, LI Guoming, CHEN Shan, CHANG Wanshun, CHEN Xuequn
Department of Chemistry and Materials, College of Sciences, Naval University of Engineering, Wuhan 430033
引用本文:

曹国良 李国明 陈珊 常万顺 陈学群. 海水飞溅区Ni-Cu-P钢的锈层和耐点蚀性能研究[J]. 金属学报, 2011, 47(2): 145-151.
, , , , . STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE[J]. Acta Metall Sin, 2011, 47(2): 145-151.

全文: PDF(1621 KB)  
摘要: 在海水飞溅区对实验室冶炼的Ni-Cu-P钢、含Cu低合金钢和碳钢进行660 d的挂片实验, 评价Ni-Cu-P钢的耐蚀性能; 采用Fourier变换红外(FTIR)光谱、电感耦合等离子体原子发射光谱(ICP-AES)、电子探针(EPMA)、 SEM和EDAX等技术, 分析3种钢表面的锈层特征. 结果表明, Ni-Cu-P钢表现出比碳钢优越的耐全面腐蚀和点蚀能力. 对锈层成分分析发现, 在宏观阴极区, 钢的内、外锈层均主要由α-FeOOH, β-FeOOH, γ-FeOOH, δ-FeOOH, Fe3O4和少量非晶氧化物组成, 但内锈层的Fe3O4含量更高, 而γ-FeOOH和β-FeOOH的含量更低. 与碳钢相比, Ni-Cu-P钢宏观阴极区和蚀坑内的锈层更致密. 对锈层中的合金元素分析发现, Ni-Cu-P钢中的合金元素Ni, Cu和P主要分布在宏观阴极区的内锈层和蚀坑内, Cu和 P在蚀坑内有富集. 在宏观阴极区, 合金元素Cu可细化内锈层的晶粒, 从而促进保护性锈层的形成. 在蚀坑内, Cu富集在锈层中的夹杂物周围, 对锈层中的裂纹和孔洞起修复作用. 合金元素Cu和Ni可提高蚀坑内基体的电位, P有助于降低钢蚀坑内基体的腐蚀速度, 因此, Ni-Cu-P钢比碳钢表现出强的耐点蚀性能.
关键词 Ni-Cu-P钢碳钢飞溅区锈层    
Abstract:Ni-Cu-P steel is well known as a seawater corrosion resistance steel due to strong corrosion resistance in marine splash zone. However, corrosion resistance mechanisms of alloying elements in Ni-Cu-P steel remain unclear. Because the steel exhibits obvious characteristic of pitting corrosion in marine splash zone, rust layers and pitting corrosion resistance were investigated in this study. The experimental steels were smelted in vacuum induction melting furnace. In order to evaluate the corrosion resistance of Ni-Cu-P steel, hanging plate test was performed in marine splash zone for 660 d. Rust layers formed on the steel surfaces were studied by means of scanning electro microscopy (SEM), energy dispersive analysis of X-ray (EDAX), Fourier transform infrared resonance (FTIR) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results indicated that average corrosion rate and pit penetration of Ni-Cu-P steel was obviously smaller than that of carbon steel after exposure test. For all the steels, the inner and outer rust layers were composed of α-FeOOH, β-FeOOH, γ-FeOOH, δ-FeOOH, Fe3O4 and a small amount of amorphous oxides. However, the inner rust layer exhibited higher content of Fe3O4 and lower content of γ-FeOOH and δ-FeOOH than the outer rust layer. Under the same condition, the rust layers both in macro cathodic region and pits of Ni-Cu-P steel were much more compact than those of carbon steel. According to the composition and distribution of alloying elements, Ni, Cu and P were mainly observed in the inner rust layer and pits, and Cu and P were found to enrich in pits. In macro cathodic region, alloying element Cu made inner rust grains small and dense.  In corrosive pits, Cu was observed to enrich around inclusions in the rust layer, which could repair and fill the slots and holes of the rust layer in pits. Additionally, addition of alloying elements Cu and Ni improved potential of matrix in pits, and alloy element P led to a decrease in the corrosion rate of matrix. Therefore, Ni-Cu-P steel exhibited stronger pitting corrosion resistance than carbon steel.
Key wordsNi-Cu-P steel    carbon steel    splash zone    rust layer
收稿日期: 2010-08-30     
ZTFLH: 

TG172.5

 
作者简介: 曹国良, 男, 1980年生, 博士生
[1] Matsushima I, translated by Jin Y K. Low Alloy Corrosion Resistant Steel—A History of Development Application and Research. Beijin: Metallurgical Industry Press, 2004: 100

(松岛  岩, 靳裕康, 译. 低合金钢耐蚀钢---开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)

[2] Melchers R E. Corros Sci, 2004; 46: 1669

[3] Huang J Z, Zuo Y. Resistance to Corrosion and Corrosive Data of Materials. Beijin: Chemical Industry Press, 2003: 97

(黄建中, 左 禹. 材料的耐蚀性和腐蚀数据. 北京: 化学工业出版社, 2003: 97)

[4] Townsend H E. Corrosion, 2001; 57: 497

[5] Suzuki S, Takahashi Y, Kamimura T, Miyuhi H, Shinoda K, Tohji K, Waseda Y. Corros Sci, 2004; 46: 1751

[6] Wang JM, Chen X Q, Li G M. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 555

[7] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2010; 46: 748

(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2010; 46: 748)

[8] Cui X L, Wang X R, Ma J H, Zhang L, Huang G Q. J Iron Steel Res, 1995; 7(4): 43

(崔秀岭, 王相润, 马巾华, 张陆, 黄桂桥. 钢铁研究学报, 1995; 7(4): 43)

[9] Zhang Q C, Wu J S, Zheng W L, Wang J J. J Mater Sci Technol, 2002; 18: 455

[10] Choi Y S, Shim J J, Kim J G. Mater Sci Eng, 2004; A385: 148

[11] Kimura M, Kihira H, Ohta N, Hashimoto M. Corros Sci, 2005; 47: 2499

[12] Ishikawa T, Maeda A, Kandori K. Corrosion, 2006; 62: 559

[13] Chen Y Y, Tzeng H J, Wei L I, Wang L H, Oung J C, Shih H C. Corros Sci, 2005; 47: 1001

[14] Chen X H, Dong J H, Han E H. Mater Lett, 2007; 61: 4050

[15] Zhang C, Cai D, Liao B, Zhao T, Fan Y. Mater Lett, 2004; 58: 1524

[16] Yang W, Gu J X, Li Q S, Xiao J X. Localized Corrosion of Metals. Beijin: Chemical Industry Press, 1995: 59

(杨 武, 顾\濬祥, 黎樵燊 , 肖京先. 金属的局部腐蚀. 北京: 化学工业出版社, 1995: 59)

[17] Wang J M, Chen X Q, Chang W S, Zhu X. J Harbin Inst Technol, 2006; 38: 1943

(王建民, 陈学群, 常万顺, 朱 锡. 哈尔滨工业大学学报, 2006; 38: 1943)

[18] Li Q X, Wang Z Y, Han W, Han E H. Acta Phys Chim Sin, 2008; 24: 1459

(李巧霞, 王振尧, 韩 薇, 韩恩厚. 物理化学学报, 2008; 24: 1459)

[19] Stratmann M, Bohnenkamp K, Ramchandran T. Corros Sci, 1987; 27: 905

[20] Dillmann P, Balasubramaniam R, Beranger G. Corros Sci, 2002; 44: 2231

[21] Bijayani P, Balasubramaniam R, Gopal D. Corros Sci, 2008; 50: 1684

[22] Yang X Z, Yang W. Corrosive Electrochemical Thermodynamic Potential—pH Diagram and Application of Metals. Beijin: Chemical industry Press, 1991: 138

(杨熙珍, 杨 武. 金属腐蚀电化学热力学电位-pH图及其应用. 北京: 化学工业出版社, 1991: 138)

[23] Sourisseau T, Chauveau E, Baroux B. Corros Sci, 2005; 47: 1117

[24] Kihira H, Ito S, Murata T. Corros Sci, 1990; 31: 383

[25] Zhang H, Chen X Q, Chang W S. J Univ Sci Technol Beijing, 2008; 30: 1133

(张恒, 陈学群, 常万顺. 北京科技大学学报, 2008; 30: 1133)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[9] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[10] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[11] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[12] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[13] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.