Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 781-787    
  论文 本期目录 | 过刊浏览 |
高温蠕变与断裂评价的若干关键问题
涂善东;轩福贞;王卫泽
华东理工大学承压系统安全科学教育部重点实验室; 上海 200237
SOME CRITICAL ISSUES IN CREEP AND FRACTURE ASSESSMENT AT HIGH TEMPERATURE
TU Shandong(TU Shan--Tung); XUAN Fuzhen; WANG Weize
Key Lab of Safety Science of Pressurized System; Ministry of Education; School of Mechanical
and Power Engineering; East China University of Science and Technology; Shanghai 200237
引用本文:

涂善东 轩福贞 王卫泽. 高温蠕变与断裂评价的若干关键问题[J]. 金属学报, 2009, 45(7): 781-787.
, , . SOME CRITICAL ISSUES IN CREEP AND FRACTURE ASSESSMENT AT HIGH TEMPERATURE[J]. Acta Metall Sin, 2009, 45(7): 781-787.

全文: PDF(1285 KB)  
摘要: 

简要介绍了现代高温装置的发展现状, 认为高温装置的安全保障是后工业文明时代无法回避的问题. 为了实现重大高温装备的设计制造和安全运行, 高温下材料的寿命预测与结构失效评价是其中关键. 针对基于Arrhenius方程的寿命外推方法存在的问题, 提出要致力研究高温材料蠕变老化过程的物理化学动力学机理; 针对实际结构引入的复杂应力状态,提出应构建拘束下的高温断裂理论; 针对复杂载荷和环境的影响, 应建立多损伤机制下的材料--结构一体化的统一失效评价方法.

关键词 蠕变断裂老化物理化学动力学拘束失效评价    
Abstract

The paper briefs the current trends of the construction of high temperature plants. The need of higher efficiency and lower consumption of resources has led to higher operation parameters of the plants. It is thus believed that the safety of high temperature installations is a critical issue that could hardly be circumvented in the period of post--industrial civilization. In order to achieve a reliable design and manufacture and safe operation of the high temperature plants, some fundamental issues concerning life prediction and failure assessment should be studied. Being aware of some very slow chemical reactions occurred in the high temperature materials after a certain period of service time, it is suggested that the physico--chemical kinetics of the high temperature materials during the slow creep process should be established so that the inaccuracy of life extrapolation techniques based on the conventional Arrhenius equation could be avoided. As the actual material in a component is generally subjected to a complex stress state and the machining of a standard fracture specimen from the component is normally not possible, high temperature fracture theory under constraints should be developed to allow the estimation of fracture properties of the material. Furthermore, a unified failure assessment diagram that includes the local fracture property, the limit loading capacity and the damage law is proposed in order to assess the structural safety under complex loading and environment cases.

Key wordscreep    fracture    aging    physico--chemical kinetics    constraint    failure assessment
收稿日期: 2009-04-15     
ZTFLH: 

TG113.2

 
基金资助:

国家自然科学基金项目50835003和10772067资助

作者简介: 涂善东, 男, 1961年生, 教授

[1] Tu S T. High Temperature Structural Integrity. Beijing: Science Press, 2003: 1
(涂善东. 高温结构完整性原理. 北京:科学出版社, 2003:1)
[2] Magistri L, Traverso A, Cerutti F, Bozzolo M, Costamagna P, Massardo A F. Fuel Cells, 2005; 5: 80
[3] Yan M G, Wu X R, Zhu Z S. Aeronaut Manuf Technol, 2003; (12): 19
(颜鸣皋, 吴学仁, 朱知寿. 航空制造技术, 2003; (12): 19)
[4] Ryskamp J M. Next Generation Nuclear Plant–High– Level Functions and Requirements, INEEL/EXT–03– 01163, Idaho Falls: Idaho National Engineering and Environmental Laboratory, 2003, doi 10.2172/910744
[5] Tu S T. Front Mech Eng China, 2007; 2: 375
[6] Viswanathan R, Stringer J. J Eng Mater Technol, 2000; 122: 246
[7] Liang X L, Headrick W L, Dharani L R, Zhao S M. Eng Failure Anal, 2007; 14: 1233
[8] ASME Code Section III, Rules for Construction of Nuclear Power Plant Components, Division 1, Sub–section NH. New York: ASME, 1995
[9] Yagi K. Int J Pressure Vesseles Piping, 2008; 85: 22
[10] Briner B G, Doering M. Science, 1997; 278: 257
[11] Heinrich A J, Lutz C P, Cupta J A, Eigler D M. Science, 2002; 298: 1381
[12] Bhadeshia H K D H, Strang A, Gooch D J. Int Mater Rev, 1998; 43: 45
[13] Shlyk–Kerner O, Samish I, Kaftan D, Holland N, Maruthi Sai P S, Kless H, Scherz A. Nature, 2006; 442: 827
[14] Sih G C, Tu S T. In: Sih G C, Tu S T, Wang Z D eds., Structural Integrity and Materials Aging. Shanghai: East China University of Science and Technology Press, 2003: 1
[15] Tu S T, Wang W Z. In: 10000 Puzzles in Science (Chemistry Volume). Beijing: Science Press, 2009: 253
(涂善东, 王卫泽. 10000个科学难题--化学卷. 北京: 科学出版社, 2009: 253)
[16] Wells A A, McBride F H. Can Metall Q, 1967; 6: 347
[17] Siverns M J, Price A T. Nature, 1970; 228: 760
[18] Wang Y L, Shen F Z, Tu S T. Eng Fract Mech, 1994; 47: 39
[19] Landes J D, Begley J A. ASTM STP590. Philadelphia: ASTM, 1976: 128
[20] Nikbin K M, Webster G A, Turner C E. ASTM STP601. Philadelphia: ASTM, 1976: 47
[21] Saxena A. ASTM STP803. Philadelphia: ASTM, 1980. 131
[22] Ohji K, Kubo S. In: Ohtani R, Ohnami M, Inoue T eds., High Temperature Creep–Fatigue, London: Elsevier, 1988: 91
[23] Saxena A. In: Nair S V, Tien J K, Bates R C, Buck O eds., Fracture Mechanics: Microstructure and Micromechanisms, Metals Park: ASM Int., 1989: 283
[24] Tu S T, Wang Z D, Chen J J. In: Sih G C, Nobile L eds., Restoration, Recycling and Rejuvenation Technology for Engineering and Architecture Application, Rome: Aracne, 2004: 23
[25] Lee J S, Jang J, Lee B W, Choi Y, Lee S G, Kwon D. Acta Mater, 2006; 54: 1101
[26] Chao Y J, Zhang X H. ASTM STP1296, Philadelphia: ASTM, 1997. 41
[27] Williams M L. ASME J Appl Mech, 1957; 24: 111
[28] O’Dowd N P, Shih C F. J Mech Phys Solids, 1991; 38: 989
[29] Neimitz A, Galkiewicz J. Int J Pressure Vessels Piping, 2006; 83: 42
[30] Beremin F M. Metall Trans, 1983; 14A: 2277
[31] Gao X, Dodds R H. Eng Fract Mech, 2001; 68: 263
[32] Budden P J, Ainsworth R A. Int J Fracture, 1999; 97: 237
[33] Dean D W, Gladwin D N. Int J Pressure Vessels Piping, 2007; 84: 378
[34] Nguyen B N, Onck P, Giessen E. Eng Fract Mech, 2000; 65: 467
[35] Tu S T. In: Eleventh Five–Year Strategic Plan of National Natural Science Foundation of China. Beijing: Science Press, 2006: 74
(涂善东. 国家自然科学基金委员会十一五战略研究规划. 北京: 科学出版社, 2006: 74)
[36] Shih C, Asaro R J. ASME J Appl Mech, 1988; 55: 299
[37] Shih C, Asaro R J. ASME J Appl Mech, 1989; 56: 763
[38] Shih C, Asaro R J, O’Dowd N P. ASME J Appl Mech, 1991; 58: 450
[39] Qiao Y. Scr Mater, 2003; 49: 491
[40] Tu S T. Theor Appl Fract Mech, 2002; 38: 203
[41] Xuan F Z, Tu S T, Wang Z D. Int J Fract, 2004; 126: 267
[42] Chen J J, Tu S T, Xuan F Z, Wang Z D. In: Sih G C, Vu–Khanh T eds., Materials for Safety and Health, Mesoscopic and Multiscale Consideration in Modern Science and Engineering, Montreal: University of Quebec, 2005: 99
[43] Chen H R, Wang L M, Karihaloo B L, Williams F W. Comput Mater Sci, 1998; 12: 1
[44] Kim Y J, Kim J S, Schwalbe K H, Kim Y J. Fatigue Fract Eng Mater Struct, 2003; 6: 683
[45] Xuan F Z, Tu S T, Wang Z D. Eng Fract Mech, 2005; 72: 2602
[46] Xuan F Z, Tu S T, Wang Z D. Adv Mech, 2005; 35: 391
(轩福贞, 涂善东, 王正东. 力学进展, 2005; 35: 391)
[47] R5. Assessment Procedure for the High Temperature Response of Structures. Procedure R5, Issue 2, Gloucester: Nuclear Electric Ltd., 1997
[48] Drubay B, Moulin D, Faidy C, Bhandari S. Defect Assessment Procedure: A French Approach. ASME PVP 266, New York: ASME, 1993: 113
[49] PD6539. 1994 Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Defects in Components Operating at High Temperatures. London: BSI, 1994
[50] British Standards BS 7910. 1999, Guide to Methods of Assessing the Acceptability of Flaws in Fusion Welded Structures. London: BSI, 1999
[51] Concari S, Fairman A. Int J Pressure Vessels Piping, 2001; 78: 1031
[52] http://www.eurofitnet.org/
[53] Wakai T, Poussard C, Drubay B. Nucl Eng Des, 2003; 224: 245
[54] Tu S T, Segle P, Gong J M. Int J Pressure Vessels Piping, 2004; 81: 199
[55] Xuan F Z, Tu S T, Wang Z D. Fatigue Fract Mater Struct, 2006; 29: 157
[56] GB/T 19624–2004. Safety Assessment for In–Service Pressure Vessels Containing Defects, General Administratio of Quality Supervision, Inspection and Quarantine of the Peoples’s Republic of China. 2005
(中华人民共和国国家标准GB/T19624--2004, 国家质量监督检验检疫总局, 2005)
[57] Dowling A R, Townly C H A. Int J Pressure Vessels & Piping, 1975; 3: 77
[58] R6 Assessment of the Integrity of Structures Containing Defects. Procedure R6–Revision 4, Gloucester, UK: Nuclear Electric Ltd, 2000
[59] Wichman, K, Lee S. Int J Pressure Vessels Piping, 1990; 43: 57
[60] Dong J L, Fu J Y, Yu S Y, Yin D J. Chin High Technol Lett, 2000; (10): 81
(董建令, 傅激扬, 于溯源, 殷德健. 高技术通讯, 2000; (10):81)
[61] Ainsworth R A, Hooton D G, Green G. Eng Fract Mech, 1999; 62: 95
[62] Davies C M, O’Dowd N P, Dean D W, Nikbin K M, Ainsworth R A. Int J of Pressure Vessels Piping, 2003; 80: 541
[63] Budden P J. Eng Fract Mech, 2006; 73: 537
[64] Xuan F Z, Tu S T, Wang Z D. Chin J Mech Eng, 2004; 17: 537
[65] Tu S T, Xuan F Z. Key Eng Mater, 2005; 297–300: 428

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[6] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[9] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[10] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[13] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[15] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.