Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 769-780    
  论文 本期目录 | 过刊浏览 |
合金材料超高周疲劳行为的基本特征和影响因素
洪友士; 赵爱国; 钱桂安
中国科学院力学研究所非线性力学国家重点实验室; 北京 100190
ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS
HONG Youshi; ZHAO Aiguo; QIAN Gui'an
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of
Sciences; Beijing 100190
引用本文:

洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
. ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS[J]. Acta Metall Sin, 2009, 45(7): 769-780.

全文: PDF(2194 KB)  
摘要: 

合金材料在超高周疲劳下具有与低周和高周疲劳不同的裂纹萌生和扩展行为以及不同的 S--N曲线特征. 材料的强度、循环加载的频率、所处的环境等都显著影响超高周疲劳的特性. 本文综述了合金材料超高周疲劳行为的基本特征和影响因素的研究进展.

关键词 合金材料超高周疲劳裂纹萌生S--N曲线疲劳强度加载频率加载环境    
Abstract

The research on very–high–cycle fatigue (VHCF) of metallic materials has become a new horizon in the field of metal research since 1980s. The behaviors of crack initiation and propagation, and the characteristics of S–N curve for metallic materials in the VHCF regime all differ from those in the low cycle and high cycle fatigue regimes. For VHCF, the cyclic stress is below the level of conventional fatigue limit and the crack initiation tends to shift from surface to interior. The defects of material, including inclusions, grain–boundary, phase interface and other micro–inhomogeneities may become interior crack initiation site. The S-N curve containing VHCF regime may present "duplex" or "step-wise" shape. The behaviors of VHCF for metallic materials are substantially affected by the strength of material, loading frequency, loading environment, etc. This paper attempts to review the research progress of essential characteristics and influential factors for VHCF behavior of metallic materials. In addition, the aspects for further research on VHCF of metallic materials are proposed, which are the process and mechanism of fatigue crack initiation and early growth, the effects of loading frequency and the environment on VHCF property, and development of quantitative model for VHCF.

Key wordsmetallic material    very--high--cycle fatigue    crack initiation    S--N curve    fatigue strength    loading frequency    loading environment
收稿日期: 2009-05-25     
ZTFLH: 

TG113.2

 
基金资助:

国家自然科学基金项目10772178, 10721202和10532070资助

作者简介: 洪友士, 男, 1951年生, 教授, 博士

[1] W¨ohler A. Engineering, 1867; 2: 160
[2] ASTM Standard E468–90, Annual Book of ASTM Standards 2006, Section 3, vol.03.01, 2006: 556
[3] Kikukawa M, Ohji K, Ogura K. J Basic Eng, 1965; 87D: 857
[4] Naito T, Ueda H, Kikuchi M. J Soc Mater Sci Jpn, 1983; 32: 1162
[5] Naito T, Ueda H, Kikuchi M. Metall Mater Trans, 1984; 15A: 1431
[6] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. Fatigue Fract Eng Mater Struct, 2008; 31: 599
[7] Ranc N, Wagner D, Paris P C. Acta Mater, 2008; 56: 4012
[8] Marines–Garcia I, Paris P C, Tada H, Bathias C, Lados D. Eng Fract Mech, 2008; 75: 1657
[9] Liu Y B, Yang Z G, Li Y D, Chen S M, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[10] Dominguez A G M. Mech Mater, 2008; 40: 636
[11] Makino T. Int J Fatigue, 2008; 30: 1409
[12] Akiniwa Y, Stanzl–Tschegg S, Mayer H, Wakita M, Tanaka K. Int J Fatigue, 2008; 30: 2057
[13] Sohar C R, Betzwar–Kotas A, Gierl C,Weiss B, Danninger H. Int J Fatigue, 2008; 30: 1137
[14] Stanzl S E, Tschegg E K, Mayer H. Int J Fatigue, 1986; 8: 195
[15] Luk´aˇs P, Kunz L. Fatigue Fract Eng Mater Struct, 2002; 25: 747
[16] Murakami Y, Yokoyama N N, Nagata J. Fatigue Fract Eng Mater Struct, 2002; 25: 735
[17] Bathias C, Paris P C. Gigacycle Fatigue in Mechanical Practice. New York: Marcel Dekker, 2005: 1
[18] Murakami Y, Nomoto T, Ueda T, Murakami Y. Fatigue Fract Eng Mater Struct, 2000; 23: 903
[19] Murakami Y, Nomoto T, Ueda T, Murakami Y. Fatigue Fract Eng Mater Struct, 2000; 23: 893
[20] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 1999; 22: 581
[21] Mughrabi H. Fatigue Fract Eng Mater Struct, 1999; 22: 633
[22] Chapetti M D, Tagawa T, Miyata T. Mater Sci Eng, 2003; A356: 236
[23] Harlow D G, Wei R P, Sakai T, Oguma N. Int J Fatigue, 2006; 28: 1479
[24] Shiozawa K, Lu L, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781
[25] Sakai T, Sato Y, OgumaN. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[26] Zhou C E, Qian G A, Hong Y S. Key Eng Mater, 2006; 324–325: 1113
[27] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[28] Nishijima S, Kanazawa K. Fatigue Fract Eng Mater Struct, 1999; 22: 601
[29] Shiozawa K, Lu L. Fatigue Fract Eng Mater Struct, 2002; 25: 813
[30] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater Struct, 2002; 25: 823
[31] Takai K, Honma Y, Izutsu K, Nagumo M. J Jpn Inst Met, 1996; 60: 1155
[32] Chapetti M D, Tagawa T, Miyata T. Mater Sci Eng, 2003; A356: 227
[33] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[34] Yang Z G, Li S X, Liu Y B, Li Y D, Li G Y, Hui W J, Weng Y Q. Int J Fatigue, 2008; 30: 1016
[35] Umezawa O, Nagai K. Metall Mater Trans, 1998; 29A: 809
[36] Chai G. Int J Fatigue, 2006; 28: 1533
[37] Zhang J M, Li S X, Yang Z G, Li G Y, Hui W J, Weng Y Q. Int J Fatigue, 2007; 29: 765
[38] Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 559
[39] Zuo J H, Wang Z G, Han E H. Mater Sci Eng, 2008; A473: 147
[40] Yao W, Guo S. Int J Fatigue, 2008; 30: 172
[41] Yang F, Yin S M, Li S X, Zhang Z F. Mater Sci Eng, 2008; A491: 131
[42] Zhou C. PhD Dissertation, Institute of Mechanics, Chinese Academy of Sciences, 2005
(周承恩. 中国科学院力学研究所博士学位论文, 2005) [43] Hong Y S, Qian G A, Zhou C E. Proc 12th Int Conf on Fract, Ottawa, 2009 (in press)
[44] Asami K, Sugiyama Y. J Heat Treatment Tech Assoc, 1985; 25: 147
[45] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[46] Sakai T, Sakai T, Okada K, Furuichi M, Nishikawa I, Sugeta A. Int J Fatigue, 2006; 28: 1486
[47] Qian G A, Hong Y S. Acta Metall Sin, 2009; 45 (in press)
(钱桂安, 洪友士. 金属学报, 2009; 45 (待发表)) [48] Kobayashi H, Ebara R, Ogura A, Kondo Y, Hamaya S. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: TMS, 2007: 319
[49] Hirukawa H, Furuya Y, Matsuoka S. JSME Int J Ser A– Solid Mech Mater Eng, 2006; 49: 337
[50] Sakai T, Chen Q, Uchiyama A, Nakagawa A, Ohnaka T. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 51
[51] Mayer H, Haydn W, Schuller R, Issler S, Bacher–H¨ochst M. Int J Fatigue, 2009; 31: 242
[52] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[53] Furuya Y, Matsuoka S. Metall Mater Trans, 2002; 33A: 3421
[54] Furuya Y, Matsuoka S. Metall Mater Trans, 2004; 35A: 1715
[55] Wang H. PhD Dissertation, Southwest Jiaotong University, Chengdu, 2004
(王弘, 西南交通大学博士学位论文, 成都, 2004) [56] Furuya Y, Abe T, Matsuoka S. Fatigue Fract Eng Mater Struct, 2003; 26: 641
[57] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[58] Bai B, Xu X, Yu Y, Cui W, Gu J. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 107
[59] Zettl B, Stanzl–Tschegg S, Mayer H. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 123
[60] Yan G L. Master Thesis, Southwest Jiaotong University, Chengdu, 2005
(闫桂玲, 西南交通大学硕士学位论文, 成都, 2005) [61] Bayraktar E, Garcias I M, Bathias C. Int J Fatigue, 2006; 28: 1590
[62] Li T, Liu Y J, Sriraman M R, Wang Q Y. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 247
[63] Wagner V, Ebel–Wolf B, Walther F, Eifler D. In: AllisonJ E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 137
[64] Zettl B, Mayer H, Ede C, Stanzl–Tschegg S. Int J Fatigue, 2006; 28: 1583
[65] Marines–Garcia I, Paris P C, Tada H, Bathias C. Mater Sci Eng, 2007; A468–470: 120
[66] Kobayashi H, Todoroki A, Oomura T, Sano T, Takehana T. Int J Fatigue, 2006; 28: 1633
[67] Zhang Z Y. Master Thesis, Southwest Jiaotong University, Chengdu, 2007
(张真源, 西南交通大学硕士学位论文, 成都, 2007) [68] Nascimento M P, Souza R C, Pigatin W L, Voorwald H J C. Int J Fatigue, 2001; 23: 607
[69] Bathias C, Drouillac L, Le Fran¸cois P. Int J Fatigue, 2001; 23: S143
[70] Ebara R. Fatigue Fract Eng Mater Struct, 2002; 25: 855
[71] Dieter G E. Engineering Design, New York: McGraw Hill, 1983: 377
[72] Marines I, Bin X, Bathias C. Int J Fatigue, 2003; 25: 1101
[73] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[74] Liaw P K, Wang H, Jiang L, Wang B, Huang J Y, Kuo R C, Huang J G. Scr Mater, 2000; 42: 389
[75] Laird C, Charsley P. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 187
[76] Buchinger L, Stanzl S, Laird C. Philos Mag, 1984; 50A: 275
[77] Buchinger L, Stanzl S, Laird C. Philos Mag, 1990; 62A: 633
[78] Basinski Z S, Korbel A S, Basinski S J. Acta Metall, 1980; 28: 191
[79] Mughrabi H. Acta Metall, 1983; 31: 1367
[80] Mughrabi H. Mater Sci Eng, 1978; 33: 207
[81] Roth L D, Willertz L E, Leax T R. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 265
[82] Taylor D, Knott JF. In: Proc 6th Int Conf Fracture, New Delhi: Pergamon Press, 1984; 3: 1759
[83] Lukas P, Kunz L, Knesl Z, Weiss B, Stickler R. Mater Sci Eng, 1985; 70: 91
[84] Meininger J M, Gibeling J C. Metall Trans, 1992; 23A: 3077
[85] Papakyriacou M, Mayer H, Pypen C, Plenk H Jr, Stanzl– Tschegg S. Mater Sci Eng, 2001; A308: 143
[86] Haberz K, Pippan R, Stuwe H P. In: Bailon J P, Dickson J I eds., Proc of the 5th Int Conf on Fatigue and Fatigue Thresholds, Montreal: Engineering Materials Advisory Services (EMAS) Publishing, 1993: 525
[87] Stanzl S E. J Soc Environ Eng, 1986; 25: 11
[88] Sakamoto H, Saiki H. Eng Fract Mech, 1994; 49: 317
[89] Sakamoto H, Takezono S. Eng Fract Mech, 1988; 31: 463
[90] Yokobori T, Sato K. Eng Fract Mech, 1976; 8: 81
[91] Holper B, Mayer H, Vasudevan A K, Stanzl–Tschegg S E. Int J Fatigue, 2003; 25: 397
[92] Holper B, Mayer H, Vasudevan A K, Stanzl–Tschegg S E. Int J Fatigue, 2004; 26: 27
[93] ShihY S, Chen J J. Nucl Eng Design, 1999; 191: 225
[94] Baik Y M, Kim K S. Int J Fatigue, 2001; 23: 417
[95] Makhlouf K, Jones J W. Int J Fatigue, 1993; 15: 163
[96] Stanzl S E, Tschegg E K. In: Lewis J C, Sines G eds., Fracture Mechanics: 14th Symposium Vol.II: Testing and Applications, ASTM STP 791, Philadelphia: American Society for Testing and Materials, 1983: 3
[97] Hoffelner W. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 461
[98] Boyce B L, Ritchie R O. Eng Fract Mech, 2001; 68: 129
[99] Ni J G. J Aerospace Power, 1995; 10: 245
(倪金刚. 航空动力学报, 1995; 10: 245) [100] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[101] Nakajima M, Tokaji K, Itoga H, Ko H N. Fatigue Fract Eng Mater Struct, 2003; 26: 1113
[102] Tokaji K, Ko H N, Nakajima M, Itoga H. Mater Sci Eng, 2003; A345: 197
[103] Petit J, Sarrazin–Baudoux C. Int J Fatigue, 2006; 28: 1471
[104] Stanzl–Tschegg S E. Fatigue Fract Eng Mater Struct, 1999; 22: 567
[105] Ebara R. Int J Fatigue, 2006; 28: 1465

[1] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[4] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[5] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[6] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[7] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[8] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[9] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[10] 余龙, 宋西平, 张敏, 李宏良, 焦泽辉, 于慧臣. 高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展[J]. 金属学报, 2014, 50(10): 1253-1259.
[11] 王志英 王俭秋 韩恩厚 柯伟 闫茂成 张峻巍 刘楚威. 涂层剥离条件下X70管线钢的应力腐蚀裂纹萌生行为[J]. 金属学报, 2012, 48(10): 1267-1272.
[12] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[13] 陈竹兵 黄志伟 王中光 朱世杰. 涂覆Ni--Cr--Al--Y涂层的镍基高温合金热机械疲劳行为[J]. 金属学报, 2009, 45(7): 820-825.
[14] 陈树铭 李永德 柳洋波 杨振国 李守新 张哲峰. 不同循环载荷下54SiCr6钢的疲劳强度[J]. 金属学报, 2009, 45(4): 428-433.
[15] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.