Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 749-753    
  论文 本期目录 | 过刊浏览 |
<110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性
张昌盛1; 马天宇1; 严 密1;裴永茂2;高旭3
1.浙江大学材料科学与工程系硅材料国家重点实验室; 杭州 310027
2.北京理工大学理学院; 北京 100081
3.清华大学工程力学系; 北京 100084)
MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY
ZHANG Changsheng1; MA Tianyu1; YAN Mi1;PEI Yongmao2;GAO Xu3
1.Laboratory of Silicon Materials; Department of Materials Science and Engineering;Zhejiang University; Hangzhou 310027
2.School of Science; Beijing Institute of Technology; Beijing 100081
3.Department of Engineering Mechanics; Tsinghua University; Beijing 100084
引用本文:

张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
, , , , . MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. Acta Metall Sin, 2009, 45(6): 749-753.

全文: PDF(1082 KB)  
摘要: 

采用区熔定向凝固方法, 以480 mm/h速度制备了<110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金棒. 通过测试在0---0.325 T磁场范围内合金 棒的应力--应变回线, 计算了应力幅σm分别为-10,-30和-50 MPa的阻尼系数Δ W/W. 结果表明, 零磁场下的Δ W/W最大; 随磁场强度增大, 同一σm条件下的Δ W/W逐渐降低. 在低磁场中, Δ W/Wσm的增加而降低; 在高磁场中,  Δ W/Wσm的增加而升高. 利用不同预压应力下的磁致伸缩--磁化强度关系曲线, 分析了磁场--应力复合加载条件下非180°磁畴和畴壁的运动形式. 依据局部内应力理论, 解释了合金棒的磁机械阻尼系数随外磁场强度和应力幅值变化的规律.

关键词 Tb--Dy--Fe合金 磁致伸缩 磁机械阻尼 磁化强度    
Abstract

During the mechanical loading and unloading process, Tb--Dy--Fe giant magnetostrictive materials can dissipate a mass of elastic energy due to the irreversible movements of non--180° domain walls, which is of interest to be applied in passive damping control systems. The magnetomechanical damping capacity of Tb--Dy--Fe compound is strongly sensitive to the stress magnitude as well as the external magnetic fields. As a new member of the Tb--Dy--Fe family, quaternary Tb0.36Dy0.64(Fe0.85Co0.15)2compound has been developed as a good candidate in wide operating \temperature range applications. In order to realize the application of Tb0.36Dy0.64(Fe0.85Co0.15)2 compound in passive damping control system, it is important to systemically investigate its damping capacity under coupled magnetomechanical loadings. In the present work, <110> oriented Tb0.36Dy0.64(Fe0.85Co0.15)2 crystal was prepared with a growth velocity of 480 mm/h by zone melting directional solidification method. The damping capacity was studied by quasi--static stress--strain measurements under a series of constant magnetic fields up to 0.325 T. Stress ranges from 0 to -10, -30 and -50 MPa were used at room temperature. The results show that maximum damping capacity (Δ W/W) is obtained at zero field. Under certain stress amplitude σm, Δ W/W decreases with the increase of magnetic field. A critical magnetic field exists in the damping capacity--magnetic field (Δ W/W--H) curves, and seems independent on the stress magnitude. Under coupled magnetic--stress loadings, the magnetostriction--magnetization curves were measured to analyze the switching process of domains and movements of domain walls, by which an explanation on the variation of damping capacity was given.

Key wordsTb--Dy--Fe alloy    magnetostriction    magnetomechanical damping    magnetization
收稿日期: 2008-11-10     
ZTFLH: 

TG113

 
基金资助:

国家自然科学基金项目50701039, 新世纪优秀人才支持计划项目05--0526及长江学者和创新团队发展计划项目0651资助

作者简介: 张昌盛, 男, 1985年生, 硕士生

[1] Ge T S. Physics, 1988; 71: 1
(葛庭燧. 物理, 1988; 71: 1)
[2] Degauque J. Mater Sci Forum, 2001; 366–368: 453
[3] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40:373
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 373)
[4] Hathaway K B, Clark A E, Teter J P. Metall Mater Trans, 1995; 26A: 2797
[5] Teter J P, Hathaway K B, Clark A E. J Appl Phys, 1996; 79: 6213
[6] Pei Y M, Fang D N. Chin Phys Lett, 2007; 24: 1611
[7] Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910
[8] Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloy Compd, 2003; 354: 263
[9] Clark A E. Ferromagnetic Materials. Vol.1, Amsterdam: North–Holland, 1980: 531
[10] Ma T Y, Jiang C B, Xu X, Zhang H, Xu H B. J Magn Magn Mater, 2005; 292: 317
[11] Ma T Y, Jiang C B, Xu H B. Appl Phys Lett, 2005; 86:162505
[12] Peterson D T, Verhoeven J D, McMasters O D, Spitzig WA, J Appl Phys, 1989; 65: 3712
[13] Smith G W, Birchak J R. J Appl Phys, 1969; 40: 5174
[14] Ma T Y, Yan M, Chen X Y, Jiang C B, Xu H B. Physica, 2008; 403B: 3677

[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[7] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[8] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[9] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[10] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[11] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[13] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .
[14] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] 高芳; 蒋成保; 刘敬华; 徐惠彬 . 第三组元添加对Fe--Ga合金相组成和磁致伸缩性能的影响[J]. 金属学报, 2007, 43(7): 683-687 .