Please wait a minute...
金属学报  2008, Vol. 44 Issue (9): 1042-1050     
  论文 本期目录 | 过刊浏览 |
元胞自动机模型模拟枝晶一次间距的选择
单博炜;黄卫东;林鑫;魏雷
西北工业大学凝固技术国家重点实验室
Dendrite Primary Spacing Selection Simulation by the Cellular Automaton Model
[中]单博炜 [英]SHAN Bo-Wei;Weidong Huang;Xin Lin;
西北工业大学凝固技术国家重点实验室
引用本文:

单博炜; 黄卫东; 林鑫; 魏雷 . 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44(9): 1042-1050 .
, , , . Dendrite Primary Spacing Selection Simulation by the Cellular Automaton Model[J]. Acta Metall Sin, 2008, 44(9): 1042-1050 .

全文: PDF(2067 KB)  
摘要: 发展了一个元胞自动机模型来模拟定向凝固中枝晶阵列的一次间距选择. 在模型中通过采用简化的 生长动力学降低了计算复杂度, 并给出了判断系统达到稳定态的方法. 基于两种一次间距的调整机制-侧 枝不稳定性和湮没不稳定性, 分别采取两套不同的数值实验方法: 一套是种晶数目固定, 采用台阶变速方式; 另一套是种晶数目改变, 抽拉速度恒定. 确定了给定的生长条件下枝晶阵列的一次间距的允许范围. 模拟 结果表明, 一次间距的允许范围基本独立于数值实验方法, 而允许范围的上限λmax和下限 λmin可以一般化 地表示为抽拉速度的幂函数. 针对丁二腈-2.乙醇定向凝固枝晶的生长模拟得出的幂函数参数与文献的 实验结果吻合得很好, 模拟结果的下限与实验结果下限吻合的程度优于Hunt-Lu模型的下限.
关键词 元胞自动机枝晶一次间距    
Abstract:A cellular automaton model was developed to simulate the primary spacing selection of dendritic array during directional solidification. A simplified growth kinetics was adopted, which could relax the computing complexity, and a strict method to determine the stable state of the system was proposed. Based on two type of primary spacing adjustment mechanisms in the simulation: branching-instability and submerging-instability, in order to determine the allowable range of primary spacing of dendritic arrays for given growth conditions, two different methods of tests were adopted, in one way the seeds number was fixed with a step-varying pulling velocity, and in another way the pulling velocity was constant with different seeds number. The simulated results showed that the allowable range is independent from test methods. The upper limit, λmax,and the lower limit, λmin, of the allowable range as the function of pulling velocity, V, can be generally expressed as the power function of the pulling velocity. During the simulation of the SCN-2.5%ethanol dendrite growth, the parameter of the power function were in good agreement with Huang’s experiments. The simulated lower limit was also in good agreement with Hunt-Lu model.
Key wordscellular automaton    dendrite    primary spacing
收稿日期: 2007-12-21     
ZTFLH:  TG111.4  
[1]Langer J S.Rev Mod Phys,1980;52:1
[2]Hunt J D.Solidification and Casting of Metals.London: The Metal Society,1979:3
[3]Kurz W,Fisher D J.Acta Metall,1981;29:11
[4]Quested P N,McLean M.Mater Sci Eng,1984;65:171
[5]Chopra M A,Tewari S N.Metall Trans,1991;22A:2467
[6]Huang W D.PhD Thesis,Northwestern Polytechnical University.Xi'an,1989 (黄卫东.西北工业大学博士学位论文,西安,1989)
[7]Huang W D,Geng X G,Zhou Y H.J Cryst Growth,1993; 134:105
[8]Pratt P A,Grugel R N.Mater Charact,1993;31:225
[9]Hun S H,Trivedi R.Acta Metall Mater,1994;42:25
[10]Lin X,Huang W,Feng J,Li T,Zhou Y.Acta Mater,1999; 47:3271
[11]Warren J A,Langer J S.Phys Rev,1990;42A:3518
[12]Warren J A,Langer J S.Phys Rev,1993;47E:2702
[13]Hunt J D,Lu S Z.Metall Mater Trans,1996;27A:611
[14]Warren J A,Boettinger W J.Acta Metall Mater,1995; 43:689
[15]Boettinger W J,Warren J A.Metall Mater Trans,1996; 27A:657
[16]Boettinger W J,Warren J A.J Crystal Growth,1999;200: 583
[17]Rappaz M,Gandin Ch-A.Acta Metall Mater,1993;41: 345
[18]Gandin Ch-A,Rappaz M.Acta Metall Mater,1994;42: 2233
[19]Nastac L.Acta Mater,1999;47:4253
[20]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[21]Zhu M F,Kim J M,Hong C P.ISIJInt,2001;41:992
[22]Beltran-Sanchez L,Stefanescu D M.Int J Cast Met Res, 2002;15:251
[23]Beltran Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[24]Dong H B,Lee P D.Acta Mater,2005;53:659
[25]Wang W,Lee P D,McLean M.Acta Mater,2003;51:2971
[26]Yang X L,Dong H B,Wang W,Lee P D.Mater Sci Eng, 2004;A386:129
[27]Gandin C A,Rappaz M.Acta Mater,1997;45:2187
[28]Xu Q Y,Liu B C.China Mech Eng,2001;12:328 (许庆彦,柳百成.中国机械工程,2001;12:328)
[29]Kang X H,Du Q,Li D Z,Li Y Y.Acta Metall Sin,2004; 40:452 (康秀红,杜强,李殿中,李依依.金属学报,2004;40:452)
[30]Guo D Y,Yang Y S.Foundry,2006;55:601 (郭大勇,杨院生.铸造,2006;55:601)
[31]Wang T M.PhD Thesis,Dalian University of Technology, 2000 (王同敏.大连理工大学博士学位论文,2000)
[32]Glicksman M E,Schaefer R J,Ayers J D.Metall Trans, 1976;7A:1747
[33]Schaefer R J,Coriell S R.Metall Trans,1984;15A:2109
[34]Ivantsov G P.Dokl Akad Nauk SSSR,1947;58:567 ( )
[1] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[2] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[3] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[4] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[5] 谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
[6] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[7] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[8] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[9] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[10] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[11] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
[12] 荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
[13] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[14] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[15] 毕成, 郭志鹏, LIOTTI E, 熊守美, GRANT P S. 铝合金凝固过程枝晶破碎现象的定量化研究*[J]. 金属学报, 2015, 51(6): 677-684.