Please wait a minute...
金属学报  2008, Vol. 44 Issue (5): 569-573     
  论文 本期目录 | 过刊浏览 |
快速凝固TiAl化合物的研究进展
刘志光;柴丽华;陈玉勇;孔凡涛
哈尔滨工业大学材料科学与工程学院
DEVELOPMENT OF RAPIDLY SOLIDIFIED TITANIUM ALUMINIDE COMPOUNDS
zhiguang Liu;Lihua CHAI;yuyong chen;
哈尔滨工业大学材料科学与工程学院
引用本文:

刘志光; 柴丽华; 陈玉勇; 孔凡涛 . 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44(5): 569-573 .
, , , . DEVELOPMENT OF RAPIDLY SOLIDIFIED TITANIUM ALUMINIDE COMPOUNDS[J]. Acta Metall Sin, 2008, 44(5): 569-573 .

全文: PDF(882 KB)  
摘要: TiAl合金是一种很有希望的航空、航天及汽车用高温结构材料,但是其较低的室温塑性限制了它的应用. 快速凝固技术有望使其性能得到改善.综述了近年来快速凝固TiAl合金的研究进展,包括快速凝固工艺、 合金的发展以及合金的组织演变及其特征、力学性能及添加合金化元素的作用、亚稳相的产生及稳定性 以及快速凝固薄带或粉末的固结等.
关键词 TiAl合金快速凝固喷射成形深过冷激光重    
Abstract:TiAl alloys are potential candidate materials in automotive and aerospace industries for high-temperature structural applications. However, the low room temperature plasticity limits their wide application. Rapid solidification technique may improve the properties through modification of microstructure. In this paper, the evolution and character of microstructure and mechanical properties of rapidly solidified TiAl alloys produced with various processing methods, and the effect of alloy additions on the solidification behavior, microstructure and properties were overviewed, including the production and stability of metastable phases, consolidation processes of rapidly solidified ribbons/powders. It is expected to provide useful information for future research and development of TiAl alloys with improved properties for future engineering applications.
Key wordsTiAl alloys    rapid solidification    spray forming    undercooling    laser resolidification
收稿日期: 2007-12-06     
ZTFLH:  TG146  
[1]Das S K,Davis L A.Mater Sci Eng,1988;A98:1
[2]Shen N F,Tang Y L,Guan S K.Acta Metall Sin,1996; 32:673 (沈宁福,汤亚力,关绍康.金属学报,1996;32:673)
[3]Vujic D,Li Z X,Whang S H.Metall Trans,1988;19A: 2445
[4]Hall E L,Huang S C.Acta Metall Mater,1990;38:539
[5]Shao G,Grosdidier T,Tsakiropoulos P.Scr Metall Mater, 1994;30:809
[6]Huang S C,Hall E L.Metall Trans,1991;22A:2619
[7]Hanamura T,Sugal T,Tanino M.J Mater Sci,1990;25: 3286
[8]Liu Z G,Chen Y Y,Chai L H,Kong F T.Trans Nonfer- rous Met Soc,2006;16(S1):711
[9]Chen Y Y,Liu Z G,Chal L H,Kong F T,Davies H V. Adv Mater Res,2007;29-30:103
[10]Whang S H,Li Z X.Mater Sci Eng,1988;A98:269
[11]Huang S C,Hall E L.Acta Metall Mater,1991;39:1053
[12]Tsukamoto S,Umezawa O.Mater Sci Eng,1997;A223: 99
[13]Miller T M,Wang L,Hofmeister W H,Witting J E,Ander- son I M.In:Bentley J,ed.,Advances in Materials Problem Solving with the Electron Microscope,Boston,MA:Mate- rials Research Society,2001:123
[14]Graves J A.Mater Sci Eng,1988;A98:265
[15]Huang S C,Hall E L.Metall Trans,1991;22A:427
[16]Huang S C,Hall E L,Gigliotti M F X.In:Stoloff N S,ed., High Temperature Ordered Intermetallic Alloys H Sympo- sium,Boston,MA:Materials Research Society,1987:481
[17]Huang S C,Siemers P A.Metall Trans,1989;20A:1899
[18]Zhang G,Blenkinsop P A,Wise M L H.Intermetallics, 1996;4:447
[19]Nishida M,Morizono Y,Kai T,Suqimoto J,Chiba A,Ku- maqae R.Mater Trans JIM,1997;38:334
[20]Eylon D,Cooke C M,Yolton C E,Nachtrab W T,Furrer D U.In:Henein H,Oki T,eds.,1st Int Conf on Process- ing Materials for Properties,Warrendale,PA:TMS,1993: 241
[21]Liu K W,Gerling R,Schimansky F P.Scr Mater,1999; 40:601
[22]Schimansky F P,Liu K W,Gerling R.Intermetallics,1999; 7:1275
[23]Gerling R,Schimansky F P,Wegmann G,Zhang J X. Mater Sci Eng,2002;A326:73
[24]Wegmann G,Gerling R,Schimansky F P,Zhang J X. Mater Sci Eng,2002;A329-331:99
[25]Chen W Z,Song X P,Qian K W,Gu H C.Mater Sci Eng, 1998;A247:126
[26]Grant P S.Prog Mater Sci,1995;39A:497
[27]Caesar C,K(?)ster U,Willnecker R,Herlach D M.Mater Sci Eng,1988;98:339
[28]Chen L F,Chen X C.Acta Phys Sin,1996;45:169 (陈立凡,陈熙琛.物理学报,1996;45:169)
[29]Liu Y C,Lin X,Guo X F,Yang G C,Zhou Y H.J Cryst Growth,2000;217:211
[30]Liu Y C,Shi Q Z,Yang G C.Mater Lett,2004;58:428
[31]Shao G,Tsakiropoulos P.Acta Metall Mater,1994;42: 2937
[32]Liu Y C,Yang G C,Guo X F,Yang J H,Xu D S,Zhou Y H.Mater Res Bull,2001;36:963
[33]Liu Y C.Mater Lett,2003;57:2262
[34]L(?)ser W,Lindenkreuz H G,Hermann R,Shuleshova O, Woodcock T G.Mater Sci Eng,2005;A413-414:398
[35]Shuleshova O,Woodcock T G,Lindenkreuz H G,Hermann R,L(?)ser W,Büchner B.Acta Mater,2007;55:681
[36]Liu Y C,Yang G C,Guo X F,Zhou Y H.Mater Lett, 2001;48:309
[37]Liu Y C,Shi Q Z,Yang G C,Zhou Y H.J Mater Sci, 2004;39:2613
[38]Liu Y C,Lan F,Yang G C,Zhou Y H.J Cryst Growth, 2004;271:313
[39]Liu Y C,Guo Z Q,Wang T,Xu D S,Song G S,Yang G C,Zhou Y H.J Mater Process Technol,2001;108:394
[40]Duan G H,Liu Y C,Yang G C,Zhou Y H.Mater Lett, 2003;57:1091
[41]Liu Y C,Yang G C,Guo X F,Huang J,Zhou Y H.J Cryst Growth,2001;222:645
[42]Liu Y C,Shi Q Z,Yang G C,Zhou Y H.Mater Lett,2005; 59:813
[43]Zhang X D,Brice C,Mahaffey D W,Zhang H,Schwendner K,Evans D J,Fraser H L.Scr Mater,2001;44:2419
[44]Qu H P,Wang H M.Mater Sci Eng,2007;A466:187
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[4] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[5] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[9] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[10] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[11] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[12] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[13] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[15] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.