Please wait a minute...
金属学报  2008, Vol. 44 Issue (4): 423-427     
  论文 本期目录 | 过刊浏览 |
管材环状试样拉伸变形的受力和变形分析
何祝斌;苑世剑;查微微;梁迎春
哈尔滨工业大学
DEFORMATION ANALYSIS OF TUBE SPECIMEN DURING RING HOOP TENSION TEST
Zhu-Bin He;
哈尔滨工业大学
引用本文:

何祝斌; 苑世剑; 查微微; 梁迎春 . 管材环状试样拉伸变形的受力和变形分析[J]. 金属学报, 2008, 44(4): 423-427 .
, , , . DEFORMATION ANALYSIS OF TUBE SPECIMEN DURING RING HOOP TENSION TEST[J]. Acta Metall Sin, 2008, 44(4): 423-427 .

全文: PDF(933 KB)  
摘要: 对管材环状试样拉伸过程中试样的受力和变形进行了分析, 采用正压力线性变化假设, 推导了等宽环状试样的正压力和切向力计算公式. 通过等宽试样和标距试样拉伸实验, 对理论分析结果进行了验证. 结果表明: 采用正压力线性变化假设所得的切向力分布规律与拉伸实验结果吻合较好; 切向力关于拉伸方向呈轴对称分布, 从正上方到两侧逐渐增大; 当摩擦系数较小时, 切向力分布较均匀, 但当摩擦系数较大时, 切向力从正上方到两侧迅速增大, 试样的颈缩和断裂发生在标距段内靠近标距边缘的位置.
关键词 AZ31B镁合金挤压管环状试样拉伸实验    
Abstract:Force and deformation of the specimen during ring hoop tension test were analyzed. Distribution of radial normal force and hoop tension force were discussed and equations derived. FEM analysis and experiments were carried out to verify the theoretical analysis. Results show that the FEM and experimental results agreed well with the distribution of hoop tension fore. The hoop tension force is axisymmetrical about the tension direction and increase from the top position to both sides. The distribution of hoop tension force is even with small friction coefficient, but will increase rapidly from top to side positions, which subsequently result in necking and fracture near the edge of gauge section.
Key wordsAZ31B magnesium alloy    extruded tube    ring hoop tension test    tension test
收稿日期: 2007-09-14     
ZTFLH:  TG306  
[1]Koc M,Altan T.J Mater Process Technol,2001;108:384
[2]Yuan S J,Qi J,He Z B.J Mater Process Technol,2006; 177:680
[3]Banabic D,Bunge H J.Formability of Metallic Materi- als,Plastic Anisotropy,Formability Testing and Forming Limits,Berlin,Germany:Springer,2000:92
[4]Wang Z T,Zhang S H,Xu Y,Xu T F,Mo L H.J Shenyang Inst Technol,2001;20(4):66 (王忠堂,张士宏,许沂,徐亭风,莫立华.沈阳工业学院学报,2001;20(4):66)
[5]Murai T,Matsuoka S,Miyamoto S.J Mater Process Tech- nol,2004;146:408
[6]He Z B,Wang X S,Yuan S J,Xu A J.Acta Metall Sin, 2007;43:534 (何祝斌,王小松,苑世剑,许爱军.金属学报,2007;43:534)
[7]Chai R X,Wen L M,Xu S Q.Light Alloy Fabr Technol, 2006;34(12):21 (柴蓉霞,温莉敏,许树勤.轻合金加工技术,2006;34(12):21)
[8]Neugebauer R,G(?)schel A,Sterzing A.In:Juster N,Roso- chowski A,eds.,Proc ESAFORM Conf on Material Form- ing,Glasgow,UK:Akapit,Poland,2006:263
[9]Liewald M,Wagner S.In:Yuan S J,Manabe K,eds.,Proc Tubehydro,Harbin,China:HIT Press,2007:19
[10]Liewald M,Wagner S,Pop R.In:Cueto E,Chinesta F, eds.,Proc ESAFORM Conf on Material Forming,New York:American Institute of Physics,2007:126
[11]Price E G.Can Metall Ouarterly,1972;11:129
[12]Cohen A B,Majumdar S,Ruther W E,Billone M C, Chung H M,Neimark L A.Office of Scientific & Techni- cal Information,Argonne:Department of Energy,1999: 2
[13]Douglas W B,Donald A K,Arthur T M.Office of Sci- entific & Technical Information,Argonne:Department of Energy,2000:51
[14]Wang H,Bouchard R,Eagleson R.J Test Eval,2002;(30): 382
[1] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[2] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[3] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[4] 符师桦 程腾 张青川 曹鹏涛 胡琦. 5456铝合金PLC效应的两种临界机制研究[J]. 金属学报, 2012, 48(12): 1453-1458.
[5] 聂德福 赵杰 张俊善. 一种估算结构钢室温蠕变的方法[J]. 金属学报, 2011, 47(2): 179-184.
[6] 张长利 Michel Bellet Manuel Bobadilla 沈厚发 柳百成. 微合金低碳钢高温拉伸实验过程的有限元模拟[J]. 金属学报, 2010, 46(10): 1206-1214.
[7] 何祝斌; 王小松; 苑世剑; 许爱军 . AZ31B镁合金挤压管材的内高压成形性能[J]. 金属学报, 2007, 43(5): 534-538 .