Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 179-184    DOI: 10.3724/SP.J.1037.2010.00336
  论文 本期目录 | 过刊浏览 |
一种估算结构钢室温蠕变的方法
聂德福1, 2), 赵杰1), 张俊善1)
1) 大连理工大学材料科学与工程学院, 大连 116024
2) 长冈技术科学大学系统安全系, 长冈 940--2116, 日本
AN APPROACH TO ESTIMATE ROOM TEMPERATURE CREEP OF STRUCTURAL STEELS
NIE Defu1, 2), ZHAO Jie1), ZHANG Junshan1)
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) Department of System Safety, Nagaoka University of Technology, Nagaoka 940-2188, Japan
引用本文:

聂德福 赵杰 张俊善. 一种估算结构钢室温蠕变的方法[J]. 金属学报, 2011, 47(2): 179-184.
, , . AN APPROACH TO ESTIMATE ROOM TEMPERATURE CREEP OF STRUCTURAL STEELS[J]. Acta Metall Sin, 2011, 47(2): 179-184.

全文: PDF(904 KB)  
摘要: 研究了轧制态、正火态X70管线钢和AISI304不锈钢的室温蠕变行为, 发现在数种应力水平下此2种钢主要呈现为速率递减的对数蠕变特征. 室温蠕变和拉伸实验的关系表明, 室温蠕变实验中的加载过程与拉伸实验相同, 且室温蠕变开始时的应变速率与加载过程结束时的相等. 在此基础上, 结合室温蠕变本构方程和描述拉伸实验中应力-应变关系的Ramberg-Osgood公式, 提出了基于外加应力估算结构钢室温蠕变的方法. 该方法得到的X70管线钢和AISI304不锈钢室温蠕变量的估算结果与实验值符合得较好, 误差均在2倍因子之内.
关键词 室温蠕变 结构钢 拉伸实验应变速率    
Abstract:Room temperature creep (RTC) behaviors of the as-rolled (AR) and normalized (Nor) X70 pipeline steel as well as the AISI304 stainless steel were investigated. At different stress levels, their RTCs mainly showed the feature of logarithmic creep with continuously falling rate. By comparing RTC with tensile tests, it was found that the loading process of RTC test was the same as the tensile test, and the strain rate at the start of RTC was equal to that at the end of loading process. Based on these results and by combining the constitutive equations of RTC with the Ramberg-Osgood equation, which is generally used to describe the stress-strain relationship in tensile tests, an approach to estimate RTC strain was presented as a function of the applied stress. On applying it to the X70 pipeline steel and AISI304 stainless steel, it was indicated that the estimated results of RTC were well consistent with the experimental data and that all the errors were within a factor of 2.
Key wordsroom temperature creep (RTC)    structural steel    tensile test    strain rate
收稿日期: 2010-07-12     
ZTFLH: 

TG111.8

 
基金资助:

国家自然科学基金资助项目50271013

作者简介: 聂德福, 男, 1979年生, 博士
[1] Andrade E N Da C. Proc Roy Soc, 1910; A84: 1

[2] Cottrell A H. Philos Mag Lett, 1996; 73(1): 35

[3] Hult J. Creep in Structures. New York: Springer Verlag, 1970: 1

[4] Evans H E. Mechanisms of Creep Fracture. London: Elsevier Applied Science, 1984: 1

[5] Zhang J S. Strength of Materials. Harbin: Harbin Institute of Technology Press, 2004: 129

(张俊善. 材料强度学. 哈尔滨: 哈尔滨工业大学出版社, 2004: 129)

[6] Zhang J S. High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 1

(张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 1)

[7] Schoeck G. Mechanical Behaviour of Materials at Elevated Temperature. New York: McGraw–Hill, 1961: 1

[8] Feng D. Metal Physics–Mechanical Properties of Metals. Beijing: Science Press, 1999: 548

(冯端. 金属物理学-第三卷金属力学性质. 北京: 科学出版社, 1999: 548)

[9] Oehlert A, Atrens A. Acta Metall Mater, 1994; 42: 1493

[10] Zhao Z B, Northwood D O, Liu C, Liu Y X. J Mater Process Technol, 1999; 89–90: 569

[11] Neeraj T, Hou D H, Daehn G S, Mills M J. Acta Mater, 2000; 48: 1225

[12] Yamada T, Kawabata K, Sato E, Kuribayashi K, Jimbo I. Mater Sci Eng, 2004; A387–389: 719

[13] Alden T H. Metall Trans, 1987; 18A : 51

[14] Wang S H, Zhang Y G, Chen W X. J Mater Sci, 2001; 36: 1931

[15] Nie D F, Zhao J. Key Eng Mater, 2007; 353–358: 138

[16] Nie D F, Zhao J, Mo T, Chen W X. Mater Lett, 2008; 62: 51

[17] Zhao J, Mo T, Nie D F. Mater Sci Eng, 2008; A483–484: 572

[18] Nie D F, Zhao J. Acta Metall Sin, 2009; 45: 840

(聂德福, 赵杰. 金属学报, 2009; 45: 840)

[19] Chen W, Kania R, Worthingham R, Boven G V. Acta Mater, 2009; 57: 6200

[20] Kocks U F, Mecking H. Prog Mater Sci, 2003; 48: 171

[21] Ramberg W, Osgood W R. Technical Note (902), NACA, 1943
[1] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[2] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[3] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[4] 王友德, 周晓东, 马蕊, 徐善华. 模拟近海大气环境下结构钢锈蚀表面特征随机模型[J]. 金属学报, 2021, 57(6): 811-821.
[5] 王友德,徐善华,李晗,张海江. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160.
[6] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[7] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[8] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[9] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[10] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
[11] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[12] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[13] 刘丁铭, 张波, 王杰, 王爱民, 王沿东, 张海峰, 胡壮麒. 温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响[J]. 金属学报, 2014, 50(12): 1498-1504.
[14] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[15] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.