Please wait a minute...
金属学报  2007, Vol. 43 Issue (6): 637-642     
  论文 本期目录 | 过刊浏览 |
1.25Cr0.5Mo钢疲劳-蠕变交互作用的损伤研究
陈志平 蒋家羚 陈凌
浙江大学化工机械研究所; 杭州 310027
引用本文:

陈志平; 蒋家羚; 陈凌 . 1.25Cr0.5Mo钢疲劳-蠕变交互作用的损伤研究[J]. 金属学报, 2007, 43(6): 637-642 .

全文: PDF(219 KB)  
摘要: 本文以连续损伤力学(CDM)的经典损伤理论为基础,对疲劳、蠕变及其交互作用下的损伤演化分别进行了研究,进而推导出了一个新的新的疲劳-蠕变交互作用的损伤模型。为将上述模型方便的运用于工程实际之中,本文通过1.25Cr0.5Mo钢光滑试样540℃环境下应力控制的梯形波加载实验,对工程中容易测量的轴向变形即平均应变的变化规律进行了研究,选取平均应变的变化作为损伤变量,用上述模型进行了1.25Cr0.5Mo钢光滑试样540℃下的疲劳-蠕变交互作用的损伤描述,结果表明实验损伤点与该模型的损伤演化规律符合较好。另外,在上述模型和平均应变变化规律的基础上,本文还对工程上如何进行失效判定进行了一定的探讨。
关键词 疲劳蠕变疲劳-蠕变交互作用损伤变量    
Abstract:Based on the continuum damage mechanics, a new damage model has been developed for fatigue-creep interaction in this paper. This model researched the damage of fatigue, creep and their interaction respectively. In order to apply this model to the practical engineering condition, fatigue-creep interaction experiments have been carried out to research the damage evolution. These tests are conducted at 540℃ under stress control, using a trapezium waveform with the hold-time per cycle. Cylindrical specimens of 1.25Cr0.5Mo steel were used in the fatigue-creep interaction experiments. According to the experiments, the changing rule of mean strain has been studied in this paper. Defining the change of mean strain as the damage variable, damage curves of different stress ranges have been obtained based on the damage model the above damage model. Results showed that the values of damage calculated from the damage variable definition mentioned above were in good agreement with these damage curves. Besides, based on the damage model and the change rules of mean strain, this paper also discusses the failure assessment in engineering. A method to prevent the rupture of engineering components has been proposed in this paper.
Key wordsfatigue    creep    fatigue-creep interaction    damage variable
收稿日期: 2006-12-08     
ZTFLH:  O346.2  
[1]Plumbridge W J,Dean M,Sand Miller D A.Fatigue Eng Mater Struct,1982;5(1):101
[2]Kachanov L M.Isv Akad Nauk SSA Otd Tekh,1958;8: 26
[3]Robotnov Y N.Creep Problems in Structure Members. Amsterdam:North-Holland,1969
[4]Lemaitre J,Chaboche J L.Mechanics of Solid Materials. Cambridge:Cambridge University Press,1990
[5]Krajcinovic D,Lemaitre J.Continuum Damage Mechan- ics:Theory and Application.Berlin:Springer Verlag, 1987:37
[6]Bhattacharya B,Ellingwood B.Int J Solids Struct,1999; 36:1757
[7]Yaguchi M,Nakamura T,Ishikawa A,Asada Y.Nucl Eng Des,1996;162(1):97
[8]Dai Z Y,Zhai J,Li Q.J Southwest Jiaotong Univ,1998; 33(1):30 (戴振雨,翟己,黎强.西南交通大学学报,1998;33(1): 30)
[9]Xiong X R.Jiangxi Sci,2005;23(1):9 (熊先仁.江西科学,2005;23(1):9)
[10]Jing J P,Meng G.Proc CSEE,2003;23(9):167 (荆建平,孟光.中国电机工程学报,2003;23(9):167)
[11]Lou Z W.Principle of Damage Mechanics.Xi'an:Xi'an Jiaotong University Press,1991:104 (楼志文.损伤力学基础.西安:西安交通大学出版社,1991: 104)
[12]Lemaitre J.Nucl Eng Des,1984;80:233
[13]Lemaitre J.J Eng Mater Technol——Trans ASME,1979; 101:284
[14]Lemaitre J,Chaboche J L.Mechanics of Solid Material. Cambridge:Cambridge University Press,1990
[15]Chen L,Jiang J L.Acta Metall Sin,2005;41:157 (陈凌,蒋家羚.金属学报,2005;41:157)
[16]Lemaitre J.J Eng Mater Technol——Trans ASME,1985; 107:83
[17]Tai W H.Eng Fract Mech,1990;37:853
[18]Wang T J.Eng Fract Mech,1992;42:177
[19]Chandrakanth S,Pandey P C.Eng Fract Mech,1995;50: 457
[20]Yang X H,Li N,Jin Z H,Wang T J.Int J Fatigue,1997; 19:687
[21]Wu H Y.Damage Mechanics.Beijing:National Defence Industry Press,1990:29 (吴鸿遥.损伤力学.北京:国防工业出版社,1990:29)
[22]Yang G S.Damage Mechanics and Composite Material Damage.Beijing:National Defence Industry Press,1995: 18 (杨光松.损伤力学与复合材料损伤.北京:国防工业出版社, 1995:18)
[23]Fan Z C,Jiang J L,Chen X D.J Zhejiang Univ(Eng Sci),2006;40:317 (范志超,蒋家羚,陈学东.浙江大学学报(工学版),2006;40: 317)
[24]Yang T C,Chen L,Fan Z C,Chen X D,Jiang J L.Pres- sure Vessel Technol,2005;154(9):6 (杨铁成,陈凌,范志超,陈学东,蒋家羚.压力容器,2005; 154(9):6)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[9] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[10] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[11] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[12] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[13] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[14] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[15] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.