Please wait a minute...
金属学报  2007, Vol. 43 Issue (2): 171-176     
  论文 本期目录 | 过刊浏览 |
高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究
王松涛 杨柯 单以银 李来风
中国科学院理化技术研究所; 北京 100080
STUDY OF COLD DEFORMATION BEHAVIORS OF A HIGH NITROGEN AUSTENITIC STAINLESS STEEL AND 316L STAINLESS STEEL
;;;
引用本文:

王松涛; 杨柯; 单以银; 李来风 . 高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J]. 金属学报, 2007, 43(2): 171-176 .
, , , . STUDY OF COLD DEFORMATION BEHAVIORS OF A HIGH NITROGEN AUSTENITIC STAINLESS STEEL AND 316L STAINLESS STEEL[J]. Acta Metall Sin, 2007, 43(2): 171-176 .

全文: PDF(408 KB)  
摘要: 冷变形是提高奥氏体不锈钢强度的有效手段。本文以一种含氮量达1.0wt.%的高氮奥氏体不锈钢和316L不锈钢为研究对象,通过在室温下对这两种材料施加不同的压缩变形量,研究了两种材料变形后的显微组织、真应力-应变曲线、显微硬度。结果表明,两种材料在冷变形量小于20%时,机械孪晶和滑移共同参与变形。随变形量增加至50%,316L的变形方式过渡到以滑移为主,而高氮钢中机械孪晶和滑移仍共同参与变形。高氮奥氏体不锈钢在变形过程中不发生马氏体相变,表明其具有较高的结构稳定性,而316L中有马氏体形成。高氮不锈钢的固溶态强度、硬度和加工硬化系数均显著高于316L,冷变形可大幅提高两种材料的强度。两种材料的显微硬度均与晶粒取向有明显相关性,晶粒取向对显微硬度的影响大于变形的不均匀性。本文还对高氮不锈钢表现出的优异性能的机制进行了分析和讨论。
关键词 高氮奥氏体不锈钢316L不锈钢冷变形    
Abstract:Cold deformation can effectively enhance the strength of austenitic stainless steels. In this paper, a high nitrogen austenitic stainless steel with 1.0wt.% nitrogen and the 316L stainless steel were investigated on their microstructures, true stress-strain curves and micro-hardness after compressive deformation at room temperature. It was found that both the mechanical twins and the slips participated in the deformation for both two steels under the deformation less than 20%, but the slips turned to be dominant for 316L when the deformation was increased to 50%, the high nitrogen steel still remaining the above two mechanisms. There was no α’ martensite transformation in the high nitrogen steel under deformation, showing better structure stability, but there was martensite in the 316L. The strength, the micro-hardness and the work-hardening effect of the high nitrogen steel were much higher than those of the 316L, and the strength could be largely enhanced by cold deformation for the two steels. The micro-hardness was related to the crystal orientation for the two steels and the effect of crystal orientation was larger than that of the microstructure inhomogeneity. The mechanism of the high nitrogen stainless steel showing excellent properties was also analyzed and discussed.
Key wordshigh nitrogen austenitic stainless steel    316L stainless steel    cold deformation
收稿日期: 2006-07-14     
ZTFLH:  TG142.71  
[1]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:8
[2]Simmons J W.Mater Sci Eng,1996;A207:159
[3]Byrnes M L G,Grujieic M,Owen W S.Acta Metall,1987;35:1853
[4]Balachandran G,Bhatia M L,Ballal N B,Krishna R P.ISIJ Int,2001;41:1018
[5]Menzel J,Kirschner W,Gerald S.ISIJ Int,1996;36:893
[6]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:87
[7]Kubota S,Xia Y,Tomota Y.ISIJ Int,1998;38:474
[8]Marshall P.Austenitie Stainless Steels.New York:Else-vier Applied Science Publishers,1984:28
[9]Di S A,Kenny J M.d Mater Sci,2003;38:3257
[10]Sandip G C,Samar D,De P K.Acta Mater,2005;53:3951
[11]RaviKumar B,Mahato B,Bandyopadhyay N R,Bhattacharya D K.Mater Sci Eng,2005;A394:296
[12]Müllner P,Solenthaler C,Uggowitzer P,Speidel M O.Mater Sci Eng,1993;A164:164
[13]Amar K D,David C M,Martin C M,John G S,David K M.Scr Mater,2004;50:1445
[14]Dailly R B,Hendry A.Mater Sci Forum,1999;318-320:427
[15]Gavriljuk V G,Berns H,Escher C,Glavatskaya N I,Sozinov A,Petrov Y N.Mater Sci Eng,1999;A271:14
[16]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:64
[17]Marshall P.Austenitic Stainless Steels.London and New York:Elsevier Applied Science Publishers,1984:27
[18]Karaman I,Sehitoglu H,Maier H J,Chumlyakov Y I.Acta Mater,2001;49:3919
[19]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:66
[20]Gavriljuk V G,Berns H.High Nitrogen Steels.New York:Springer-verlag Berlin Heidelberg,1999:58
[21]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:114
[22]Grujicic M,Nilsson J-O,Owen W S,Thorwaldsson T.In:Foct J,Hendry A eds.,High Nitrogen Steels HNS-88,Brookfield:North Am Publ Centre,1989:151
[23]Sassen J,Garrat-Reed A J,Owen W S.In:Foct J,Hendry A eds.,High Nitrogen Steels HNS-88,Brookfield:North Am Publ Centre,1989:159
[1] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[4] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[5] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[6] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[7] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[8] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[9] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[10] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[11] 马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
[12] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[13] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[14] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[15] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.