Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 454-458     
  论文 本期目录 | 过刊浏览 |
金属直薄壁件激光直接沉积过程的有限元模拟 II. 沉积过程中热应力场的模拟
高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮
北京有色金属研究总院
引用本文:

高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 II. 沉积过程中热应力场的模拟[J]. 金属学报, 2006, 42(5): 454-458 .

全文: PDF(923 KB)  
摘要: 建立了按激光光斑直径逐点沉积热力耦合的热应力有限元分析模型. 316L不锈钢直薄壁件沉积过程的热应力模拟结果显示,拉应力区出现在基板与沉积部分界面处(界面拉应力区)和沉积部分顶部(顶部拉应力);拉应力区的位置随激光束的运动不断变化. 实验证明, 沉积过程中的开裂分别发生在沉积部分顶部(顶部开裂)和基板与沉积部分界面处的边缘部位(边缘开裂). 顶部开裂出现在顶部拉应力区, 边缘开裂出现在界面拉应力区中拉应力最大的边缘部位. 有限元模拟结果很好地解释了实验中的开裂现象.
关键词 激光直接沉积金属直薄壁零件有限元模拟    
Abstract:Abstract. RP/M is an advance technology based on build-up and discrete idea, and Laser direct deposition by coaxially feeding the powders to laser melting pool is a RM technology in general use. It is a critical problem found in this technology that the thermal stress result in the cracking and residual stress. The finite element model of the thermal stress is created in the paper by the use of thermal force coupling method According to laser spot diameter and pointwise deposition. The simulating results depositing vertical thin wall sample of 316L stainless steel have exhibited that the tensile stress presents in the position located at interface joining the substrate on depositing layer(named as interface tensile stress zone)and the top of the depositing layer (named as top tensile stress zone), and the position of those tensile stress zones continue to vary along with the movement of laser beam. The experiment observation demonstrates that the cracking during depositing process individually occur on the top of depositing layer (named as top cracking) and edge positions located at interface joining the substrate on depositing layer(named as edge cracking).The top cracking occurs in the top tensile stress zone, and edge cracking occurs in the edge positions with maximum tensile stress in the interface tensile stress zone. The simulating results give an appropriate explanation for the cracking phenomenon during depositing the vertical thin wall sample, and that the validation of finite element model and the accuracy of the simulating results have been illustrated.
Key wordsLaser direct deposition    Metallic Vertical thin wall samples    Finite Element Simulation    Thermal stress
收稿日期: 2005-09-16     
ZTFLH:  TG142  
[1] Nickel A H. PhD Thesis, Stanford University, 1999
[2] Nickel A H, Barnett D M, Prinz F B. Mater Sci Eng, 2001; A317: 59
[3] Labudovic M, Hu D, Kovacevic R. J Mater Sci, 2003; 38: 35
[4] Shen Z H, Zhang S Y. Opt Laser Technol, 2001; 33: 533
[5] Toyserkani E, Khajepour A, Corbin S. Opt Laser Eng, 2004; 41: 849
[6] Hofmeister W. JOM, 1999; 51(7): 241
[7] Dai K, Shaw L. Acta Mater, 2004; 52: 69
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[4] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[5] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[6] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[7] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[8] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[9] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[10] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[11] 赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.
[12] 吴波 魏悦广 谭建松 王建平. 纳米晶Ni晶间断裂的数值模拟[J]. 金属学报, 2009, 45(9): 1077-1082.
[13] 石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.
[14] 高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 III. 沉积过程中变形的分析[J]. 金属学报, 2006, 42(5): 459-462 .
[15] 高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 Ⅰ. 沉积过程中温度场的模拟[J]. 金属学报, 2006, 42(5): 449-453 .