Please wait a minute...
金属学报  2006, Vol. 42 Issue (2): 195-200     
  论文 本期目录 | 过刊浏览 |
低周疲劳寿命预测的能量模型探讨
陈凌;蒋家羚;范志超;陈学东;杨铁成
浙江大学化工机械研究所
Discussion of energy model for low cycle fatigue life prediction
Chen Ling
浙江大学化工机械研究所
引用本文:

陈凌; 蒋家羚; 范志超; 陈学东; 杨铁成 . 低周疲劳寿命预测的能量模型探讨[J]. 金属学报, 2006, 42(2): 195-200 .
, , , , . Discussion of energy model for low cycle fatigue life prediction[J]. Acta Metall Sin, 2006, 42(2): 195-200 .

全文: PDF(507 KB)  
摘要: 从熵守恒定律和能量守恒定律出发, 推导出一个新的低周疲劳寿命预测能量模型,并以该模型为基础, 对线性累积损伤法则进行了探讨. 通过316L钢420℃环境下应力控制的低周疲劳实验, 用该模型及基于该模型的线性累积损伤法则进行了低周疲劳寿命和剩余寿命的预测, 预测结果与实测结果符合较好.
关键词 低周疲劳熵守恒能量守恒应变能    
Abstract:The laws of entropy conservation and energy conservation are applicable to any system. In this paper, a new energy model for low cycle fatigue (LCF) life prediction has been derived from the above two laws. Based on this model, an investigation of cumulative damage was also accomplished. By low cycle fatigue experiment of 316L steel under stress control at 420℃, the prediction of fatigue life and residual life has been carried out by the new energy model and the principle of linear accumulation damage based on this model. The predicted results have been compared with the experimental data. A good agreement is noted between the predicted and experimental results.
Key wordslow cycle fatigue    entropy conservation    energy conservation    strain energy    cumulative damage
收稿日期: 2005-04-29     
ZTFLH:  O346.2  
[1] Kwofie S. Int J Fatigue, 2001; 23: 829
[2] Smith K N, Watson P, Topper T H. J Mater, 1970; 5: 767
[3] Mrozinski S, Topolinski T. J Theor Appl Mech, 1999; 37: 223
[4] Lefebvre D, Neale K W, Ellyin F. J Eng Mater Technol, 1988; 103(1): 1
[5] Tchankov D S, Vesselinov K V. Int J Pressure Vessel Piping, 1998; 75: 955
[6] Feltner C E, Morrow J D. J Basic Eng, 1961; 83(3): 15
[7] Xiao L, Gu H C. J Eng Mater Technol, 1998; 120(2): 114
[8] Park J, Nelson D. Int J Fatigue, 2000; 22: 23
[9] Zhang W X, Chen F, Guo C B, Yu Q. Pressure Vessel Technol, 2002; 19(6): 4(张文孝,陈飞,郭成壁,于强.压力容器,2002;19(6):4)
[10] Ellyin F. J Eng Mater Technol, 1985; 107(4): 119
[11] Sander B I. Fundemental of Cyclic Stress and Strain. Wisconsin: The University of Wisconsin Press, 1972: 52
[12] Xiao T, De W, Hao X. Int J Fatigue, 1989; 11: 353
[13] Xia Z, Kujawski D, Ellyin F. Int J Fatigue, 1996; 18: 335
[14] Ellyin F, Golos K, Xia Z. J Eng Mater Technol, 1991; 113(1): 112
[15] Ellyin F, Xia Z. J Eng Mater Technol, 1993; 115(4): 411
[16] Ellyin F. Mech Res Commun, 1974; 1(4): 219
[17] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1992; 28: A163(童小燕,王德俊,徐灏.金属学报,1992;28:A163)
[18] Lemaitre J, Chobche J L. Mechanics of Solids Materials. Cambridge: Cambridge University Press, 1990: 65
[19] Yang G S. Damage Mechanics and Composite Material Damage. Beijing: National Defence Industry Press, 1995: 23(杨光松.损伤力学与复合材料损伤.北京:国防工业出版社,1995:23)
[20] Tadeusz L. Int J Fatigue, 2001; 23: 467
[21] Wang R, Huang W B, Huang Z P. Introduction of Plasticity Mechanics. Beijing: Peking University Press, 1992: 1(王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992:11
[22] Wu D G, Zhang B. Calculus (I). Hangzhou: Zhejiang University Press, 1995: 183(吴迪光,张彬.微积分学(上).杭州:浙江大学出版社,1995:183)
[23] Morrow J. ASTM STP 378, 1965: 45
[24] Golos K, Ellyin F. Theor Appl Fract Mech, 1987; 7: 169
[25] Zhao S B. Design for Fatigue Resistance. Beijing: China Machine Press, 1994: 100(赵少汴.抗疲劳设计.北京:机械工业出版社,1994:100)
[26] Chen L, Jiang J L. J Mech Strength, 2005; 27(1): 121(陈凌,蒋家羚.机械强度,2005;27(1):121)
[27] Chen L, Jiang J L. Pressure Vessel Technol, 2003; 20(10): 11 (陈凌,蒋家羚.压力容器,2003;20(10):11)T
[1] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[2] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[3] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[4] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[5] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[6] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[7] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[8] 张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.
[9] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
[10] 王媛媛, 陈立佳, 王宝森. 温度对625镍基高温合金焊接接头低周疲劳行为的影响[J]. 金属学报, 2014, 50(12): 1485-1490.
[11] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[12] 于慧臣,董成利,焦泽辉,孔凡涛,陈玉勇,苏勇君. 一种TiAl合金的高温蠕变和疲劳行为及其寿命预测方法[J]. 金属学报, 2013, 49(11): 1311-1317.
[13] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[14] 张莹 张义文 张娜 刘明东 刘建涛. 粉末冶金高温合金FGH97的低周疲劳断裂特征[J]. 金属学报, 2010, 46(4): 444-450.
[15] 王航 徐燕灵 孙巧艳 肖林 孙军. 细晶Ti--2Al--2.5Zr合金室温/低温低周疲劳行为及微观结构[J]. 金属学报, 2009, 45(4): 434-441.