Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1149-1152     
  论文 本期目录 | 过刊浏览 |
单晶Cu表面黏-滑效应的分子动力学模拟
程东;严志军;严立
大连海事大学轮机工程学院; 大连 116026
Molecular Dynamic Simulations of the Stick--Slip Phenomenon on the Surface of Cu Single CrystaL
CHENG Dong; YAN Zhijun;YAN Li
Marine Engineering College; Dalian Maritime University; Dalian 116026
引用本文:

程东; 严志军; 严立 . 单晶Cu表面黏-滑效应的分子动力学模拟[J]. 金属学报, 2006, 42(11): 1149-1152 .
, , . Molecular Dynamic Simulations of the Stick--Slip Phenomenon on the Surface of Cu Single CrystaL[J]. Acta Metall Sin, 2006, 42(11): 1149-1152 .

全文: PDF(672 KB)  
摘要: 本文运用分子动力学方法模拟了单晶体Cu在微摩擦过程中的黏-滑效应。模拟结果表明:在原子尺度,摩擦表面的原子排列较规则,摩擦力曲线为大小锯齿的周期变化。这种黏-滑效应可以解释为位错机制,即摩擦表面间位错的产生与消失的过程。大小锯齿的峰值受载荷、滑动速度、接触面两侧的晶格常数及晶格位向差等多个因素的影响。载荷越大,针尖滑动时移动的原子数量越多,接触面两侧的原子排列越不规则,则小锯齿的峰值越小,并随着载荷的增大而逐渐消失。摩擦力曲线中的小锯齿峰值与滑动速度呈线性关系。不同材料的接触面和不同滑动方向的黏-滑现象并不相同。摩擦力曲线的变化周期取决于滑动过程中基体沿滑动方向的晶格常数。
关键词 黏-滑效应分子动力学模拟微观干摩擦    
Abstract:The mechanisms of micro stick-slip phenomenon were investigated with the 3D Molecular Dynamics Simulations (MDS) of single-asperity dry friction on homogeneous Cu. At the atomic scale, the regular arrangement of atoms on the sliding surfaces makes a large and a small “sawtooth” displayed in the friction force curve. This can be explained by the appearance and disappearance of the dislocations on the sliding surfaces. The magnitudes of “sawtooth” depend on the load, sliding speed, and the lattice difference across the sliding surface. The higher the load, the more atoms to be moved during dry friction, and the less the magnitude of the small “sawtooth”. The magnitude of the small “sawtooth” is linear to the sliding speed. The stick-slip phenomenon varies at different sliding surfaces and different sliding directions, but the period of the “sawtooth” is just the lattice constant of the substrate along the sliding direction.
Key wordsStick-Slip Phenomenon    Molecular Dynamic Simulation    Micro Dry Friction
收稿日期: 2006-03-29     
ZTFLH:  tg146.1  
[1] Fujisawa S, Kishi E, Sugawara Y, Morita S. Phys Rev, 1995; 51B: 7849
[2] Gnecco E, Bennewitz R, Socoliuc A, Meyer E. Wear, 2003; 254: 859
[3] Bennewitz R, Gyalog T, Guggisberg M, Bammerlin M, Meyer E, Guntherodt H J. Phys Rev, 1999; 60B: R11301
[4] Tomlinson G A. Philos Mag S, 1929; 77: 905
[5] Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Guntherodt H J. Phys Rev Lett, 2000; 84: 1172
[6] Hurtado J A, Kim K S. Proc R Soc London, 1999; 455A: 3363
[7] Rekhviashvili S Sh. Technol Phys, 2002; 47: 140
[8] Sorensen M R, Jacobsen K W, Stoltze P. Phys Rev, 1996; 53B: 2101
[9] Buldum A, Ciraci S. Phys Rev, 1997; 55B: 2606
[10] Buldum A, Ciraci S, Batra I P. Phys Rev, 1998; 57B: 2468
[11] Zhang L C, Tanaka H. Wear, 1997; 211: 44
[12] Krim L. Am J Phys, 2002; 70: 890
[13] Ringlein J, Robbins M O. Am J Phys, 2004; 72: 884
[14] Zhang L C, Johnson K L, Cheong W C D. Tribol Lett, 2001; 10: 23
[15] Rozman M G, Urbakh M, Klafter J. Physica, 1999; 266A: 272
[16] Wadley H N G, Zhou A X, Johnson R A, Neurock M. Prog Mater Sci, 2001; 46: 329
[17] Zhou X W, Wadley H N G, Johnson R A. Acta Mater, 2001; 49: 4005
[18] Haile J M. Molecular Dynamics Simulation: Elementary Methods, New York: John Wiley, 1992
[19] Parrinello M, Rahman A, J Appl Phys, 1981; 52: 7180
[20] Parrinello M, Rahman A. J Chem Phys, 1982; 76: 2662
[21] Cheng D, Yan L, Yan Z J . 3rd Int Conf on Material Processing for Properties and Performance, Singapore: Institute of Materials (East Asia), 2004: 611
[1] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[2] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[3] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[4] 梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
[5] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[6] 坚增运,李娜,常芳娥,方雯,赵志伟,董广志,介万奇. Cu熔体中原子团簇在凝固过程中的演变规律分子动力学模拟[J]. 金属学报, 2012, 48(6): 703-708.
[7] 刘小明 由小川 柳占立 聂君锋 庄 茁. 纳米Ni薄膜在摩擦过程中塑性行为的分子动力学模拟[J]. 金属学报, 2009, 45(2): 137-142.
[8] 程东 严志军 严立. Cu/Ni多层膜强化机理的分子动力学模拟[J]. 金属学报, 2008, 44(12): 1461-1464.
[9] 赵毅; 赵九洲; 胡壮麒 . 过冷Ni3Al熔体形核的分子动力学模拟[J]. 金属学报, 2008, 44(10): 1157-1160 .
[10] 王晓春; 贾瑜; 姚乾凯; 王飞; 马健新; 胡行 . 金属高Miller指数表面能的分子动力学研究[J]. 金属学报, 2004, 40(6): 589-.
[11] 张弢; 张晓茹; 管立; 齐元华; 徐昌业 . 金属Cu熔化及晶化行为的计算机模拟[J]. 金属学报, 2004, 40(3): 251-256 .
[12] 李启楷; 张跃; 褚武扬 . 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40(12): 1238-1242 .
[13] 李明; 褚武扬; 高克玮; 乔利杰 . 铝单晶中位错交割过程的分子动力学模拟[J]. 金属学报, 2003, 39(10): 1099-1104 .
[14] 李启楷; 张跃; 郭献忠; 褚武扬 . Cu3Au中脱合金层产生内应力的分子动力学模拟[J]. 金属学报, 2003, 39(1): 51-54 .
[15] 徐昌业; 张弢; 吴爱玲; 张晓茹 . 液态合金NiAl3冷却过程中的分子动力学模拟[J]. 金属学报, 2002, 38(3): 321-325 .