Please wait a minute...
金属学报  2005, Vol. 41 Issue (11): 1127-1135     
  论文 本期目录 | 过刊浏览 |
低碳钢在Ae3温度之上的形变诱导铁素体(一种马氏体)的相变研究
刘朝霞; 李殿中; 乔桂文
中国科学院金属研究所
Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel
LIU Zhaoxia; LI Dianzhong; QIAO Guiwen
Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

刘朝霞; 李殿中; 乔桂文 . 低碳钢在Ae3温度之上的形变诱导铁素体(一种马氏体)的相变研究[J]. 金属学报, 2005, 41(11): 1127-1135 .
, , . Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel[J]. Acta Metall Sin, 2005, 41(11): 1127-1135 .

全文: PDF(1144 KB)  
摘要: 通过对低碳钢Q235的单向压缩实验,研究了应变、应变速率和变形温度(高于奥氏体铁素体平衡转变温度Ae3)对形变诱导铁素体相变的影响. 通过光学显 微镜、扫描电子显微镜和X射线衍射仪研究了热变形试样的微观组织结构,利用纳米压痕仪测定了形变诱导铁素体和先共析铁素体的纳米压痕硬度和弹性模量. 结果表明,形变诱导铁素体相变可以在Ae3温 度之上发生且应变速率和应变越大,相变越容易. 在名义应变ε=80%,应变速率 ε=20 s-1 的条件下形变诱导铁素体相变上限温度为945 ℃ (Ae3+98 ℃). 同时发现一个有趣的现象是, 在870-920 ℃区间内变形时,随变形温度下降,应力上升; 而在830-870 ℃区间变形时,随变形温度的下降,整体应力反而下降. 与先共析铁素体X射线衍射峰比较,形变诱导铁素体X射线衍射峰明显向小角度方向漂移,形变诱导铁素体的纳米压痕硬度和弹性模量亦明显大于先共析铁素体.实验表明,这种形变诱导铁素体本质上是一种马氏体.
关键词 形变诱导铁素体相变低碳钢上限温度    
Abstract:A series of unidirectional compression tests of a low carbon steel Q235 were performed on a Gleeble 3500 thermal simulator,and the influences of strain, strain rate and deformation temperature (above the isothermal transformation temperature Ae3 from austenite to ferrite) on deformation induced ferrite transformation (DIFT) have been examined. The microstructure, nanoindentation hardness and the elastic modulus of deformation induced ferrite (DIF) and proeutectoid ferrtie were determined by optical microscope, scanning electron microscope (SEM), X-ray diffraction (XRD) and nanoindentation techniques. The results show that DIFT can take place above Ae3 temperature, the higher the strain rate and the strain, the more favorable for DIFT. When ε=80% and ε=20 s-1, the upper limit temperature of DIFT can be elevated to 945 ℃ (Ae3+98 ℃). An interesting phenomenon is found that when the deformation temperature is between 870-920℃, the total stress is increased with deformation temperature decreasing. However, when deformed between 830-870℃, the total stress is decreased with deformation temperature decreasing. Compared with the diffraction peak of proeutectoid ferrite, the diffraction peak of DIF was shift to a low angle in XRD analysis, and both the nanoindentation hardness and elastic modulus of DIF are much higher than those of proeutectoid ferrite, which proved DIF to be a kind of martensite.
Key wordsdeformation induced ferrite transformation    low carbon steel    upper limit temperature   
收稿日期: 2005-06-30     
ZTFLH:  TG113.1  
[1] Priestner R, Hodgson P D. Mater Sci Technol, 1992; 8: 849
[2] Huang Y D, Yang W Y, Sun Z Q. J Mater Proc Technol, 2003; 134: 19
[3] Hodgson P D, Hickson M R, Gibbs R K. Scr Mater, 1999; 40: 1179
[4] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999; 40: 433
[5] Hurley P J, Hodgson P D. Mater Sci Technol, 2001; 17: 1360
[6] Hickson M R , Hodgson P D. Mater Sci Technol, 1999; 15: 85
[7] Yang P, Fu Y Y, Cui F E, Sun Z Q. Ada Metall Sin, 2001; 37: 900 (杨平,傅云义,崔凤娥,孙祖庆.金属学报,2001;37:900)
[8] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629 (齐俊杰,杨王玥,孙祖庆.金属学报, 2002;38:629)
[9] Hickson M R , Gibbs R K, Hodgson P D. ISIJ Int, 1999;39:1176
[10] Yada H, Matsumura Y. Trans Iron Steel Inst Jpn, 1987;27:492
[11] Matsumura Y, Yada H. Metall Soc Technol Paper, 1986;A86-28:1
[12] Yada H, Li C M, Yamagata H. ISIJ Int, 2000; 40: 200
[13] Mintz B, Lewis J, Jonas J J. Mater Sci Technol, 1997; 13:379
[14] Hurley P J, Hodgson P D. Mater Sci Eng, 2001; 302A:206
[15] Bleck W, Herzig C, Lorenz U. Mater Technol, 2001; 72:406
[16] Yang Z M, Wang R Z. ISIJ Int, 2003; 43: 761
[17] Tong M M, Ni J, Zhang Y T, Li D Z, Li Y Y. Scr Mater,2004; 50: 909
[18] Priestner R, Al-Horr Y M, Ibraheem A K. Mater Sci Technol, 2002; 18: 973
[19] Yang Z M, Zhao Y, Wang R Z, MA Y W, Che Y M. Acta Metall Sin, 2000; 36: 818 (杨忠民,赵燕,王瑞珍,马燕文,车彦民.金属学报,2000; 36:818)
[20] Yang Z M, Zhao Y, Wang R Z, Ma Y W, Che Y M, Chen Q A. Acta Metall Sin, 2000; 36: 1061 (杨忠民,赵燕,王瑞珍,马燕文,车彦民,陈其安.金属学 报,2000;36:1061)
[21] Liu Z X, Tong M M, Huang C J, Li D Z. Acta Metall Sin, 2004; 40: 930 (刘朝霞,佟铭明,黄成江,李殿中.金属学报,2004;40:930)
[22] Li W J, Du L X, Zhang H M, Liu X H, Wang G D. J Iron Steel Res, 2000; 12: 36 (李维娟,杜林秀,张红梅,刘相华,王国栋.钢铁研究学报, 2000;12:36)
[23] Amin R K, Pickering F B. Thermomechanical processing of microalloyed austenite , Warrendale, PA: TMS, 1982: 377
[24] Dube A, Aranson H I, Mehl R F. Rev Met, 1958; 55: 201
[25] Massalski T B. Acta Metall, 1958; 6: 243
[26] Xu Z Y. Heat Treatment, 2003; 18: 1 (徐祖耀.热处理,2003;18:1)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[4] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[5] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[6] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.
[7] 穆鑫, 魏洁, 董俊华, 柯伟. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50(11): 1294-1304.
[8] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[9] 谭向虎,单际国,任家烈. Cr层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751-756.
[10] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[11] 侯自勇 许云波 吴迪. 超快速退火下超低碳钢的再结晶行为研究[J]. 金属学报, 2012, 48(9): 1057-1066.
[12] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[13] 穆鑫,魏洁,董俊华,柯伟. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48(4): 420-426.
[14] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[15] 张朋 张福成 王天生. 渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征[J]. 金属学报, 2011, 47(8): 1038-1045.