Please wait a minute...
金属学报  2004, Vol. 40 Issue (9): 903-908     
  论文 本期目录 | 过刊浏览 |
确定双相TiAl基合金中γ/γ界面关系的变换矩阵
陈善华 G. Schumacher
成都理工大学材料与生物工程学院; 成都 610059;Structure and Dynamics of Solids; Hahn-Meitner-Institut Berlin GmbH; 14109 Berlin; Germany
Transformation Matrices for Determination of γ/γ Interface Types in Two-Phase TiAl Alloys
CHEN Shanhua; G. Schumacher
College of Materials and Bioengineering; Chengdu University of Technology; Chengdu 610059;Structure and Dynamics of Solids; Hahn--Meitner-Institut Berlin GmbH; 14109 Berlin; Germany
引用本文:

陈善华; G.Schumacher . 确定双相TiAl基合金中γ/γ界面关系的变换矩阵[J]. 金属学报, 2004, 40(9): 903-908 .
, . Transformation Matrices for Determination of γ/γ Interface Types in Two-Phase TiAl Alloys[J]. Acta Metall Sin, 2004, 40(9): 903-908 .

全文: PDF(10616 KB)  
摘要: γ/γ界面对(γ+α2) 双相TiAl基合金的力学性能有着重要影响.采用矩阵方法系统 地导出了该合金中标定 γ相晶体学取向的变换矩阵.利用这些 变换矩阵和汇聚束电子衍射技术对XDTM制备的Ti-47Al-2Mn-2Nb(原子分数, %)+ 0.8TiB2(体积分数, %)合金中γ/γ界面关系及其统计分布进行了测定.
关键词 TiAl基合金变换矩阵γ/γ界面关系    
Abstract:The γ/γ lamellar interfaces play a critical role in the mechanical properties of γ+α2 two-phase TiAl-based alloys. The transformation matrices necessary for indexing the crystallographical orientations of γ lamella are systematically calculated. Based on these calculated matrices, the interface types between neighboring γ laths could be determined unambiguously. The frequency of different interface types in a Ti-47Al-2Mn-2Nb (atomic fraction, %)+0.8TiB2(volume fraction, %) alloy was measured by means of convergent-beam electron diffraction and compared with the frequency distribution in binary TiAl alloys.
Key wordsTiAl-based alloy    transformation matrix    γ/γ interface
收稿日期: 2003-08-15     
ZTFLH:  TG146.2  
[1] Chen Y Y, Kong P T. Acta Metall Sin, 2002; 38: 1141(陈玉勇,孔凡涛.金属学报,2002;38:1141)
[2] Blackburn M J. In: Yaffe R, Promisel N, eds., The Science Technology and Applications of Titanium, Oxford: Pergamon, 1979: 633
[3] Inui H, Oh M H, Nakamura A, Yamaguchi M. Philos Mag,1992; 66A: 539
[4] Jin Z, Gray G T, Yamaguchi M. Philos Mag, 1998; 78A:239
[5] Zghal S, Naka S, Couret A. Acta Mater, 1997; 45: 3005
[6] Jin Z, Gray G T. Mater Sci Eng, 1997; A231: 62
[7] Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1990; 34: 1
[8] Chen S H, Mukherji D, Schumacher G, Frohberg G, WahiR P. Mater Sci Eng, 2001; A300: 299
[9] Steeds J W. In: Hren J J, Goldstein J I, Joy D C, eds., Introduction to Analytical Electron Microscopy, New York: Plenum Press, 1979: 387
[10] Stadelmann P A. Ultramicroscopy, 1987; 21: 131
[11] Inui H, Nakamura A, Oh M H, Yamaguchi M. Philos Mag,1992; 66A: 557
[12] Inui H, Kishida K, Kobayashi M, Yamaguchi M, KawasakiM, Ibe K. Philos Mag, 1996; 74A: 451
[13] Denquin A, Naka S. Philos Mag Lett, 1993; 68: 13
[1] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[2] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[3] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[4] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[5] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
[6] 熊超 马颖澈 陈波 刘奎 李依依. γ-TiAl基合金汽车排气阀吸铸充型过程水模拟[J]. 金属学报, 2011, 47(11): 1408-1417.
[7] 杨莉莉 郑立静 肖志霞 闫洁 张虎. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响[J]. 金属学报, 2010, 46(7): 879-884.
[8] 肖志霞 郑立静 杨莉莉 闫洁 张虎. 温度梯度对定向凝固TiAl基合金片层取向的影响[J]. 金属学报, 2010, 46(10): 1223-1229.
[9] 赵丽利; 林均品; 王艳丽; 叶丰; 陈国良 . Ti50Al和Ti45Al8Nb合金高温初期氧化行为[J]. 金属学报, 2008, 44(5): 557-564 .
[10] 苏继龙; 胡更开 . γ-TiAl基PST晶体的屈服应力及孪晶影响的细观力学研究[J]. 金属学报, 2005, 41(12): 1243-1248 .
[11] 董利民; 崔玉友; 杨锐; 王福会 . 元素Si对TiAl合金抗氧化性能的影响[J]. 金属学报, 2004, 40(4): 383-387 .
[12] 吴士平; 郭景杰; 贾均 . TiAl基合金排气阀立式离心铸造充型及凝固过程数值模拟[J]. 金属学报, 2004, 40(3): 326-330 .
[13] 董利民; 崔玉友; 杨锐 . B和C对铸造TiAl基合金宏观和显微组织的影响[J]. 金属学报, 2002, 38(6): 643-646 .
[14] 陈玉勇; 孔凡涛 . TiAl基合金新材料研究及精密成形[J]. 金属学报, 2002, 38(11): 1141-1148 .
[15] 林建国; 吴国清; 魏浩岩; 肖葵; 黄正 . γ-TiAl基合金超塑扩散焊接[J]. 金属学报, 2001, 37(2): 221-224 .