Please wait a minute...
金属学报  2002, Vol. 38 Issue (11): 1149-1156     
  论文 本期目录 | 过刊浏览 |
铸造镍基高温合金的蠕变阻力
袁超  郭建亭  杨洪才
中国科学院金属研究所;沈阳110016
引用本文:

袁超; 郭建亭; 杨洪才 . 铸造镍基高温合金的蠕变阻力[J]. 金属学报, 2002, 38(11): 1149-1156 .

全文: PDF(349 KB)  
摘要: 在对颗粒强化理论和位错蠕变理论进行回顾、评价基础上,发展了一个位错蠕变阻力模型,认为蠕变阻力是影响铸造镍基高温合金蠕变机制的重要因素.当施加应力足以使位错切入γ'相时,主要蠕变机制是位错切割γ'相过程,蠕变阻力就是位错切入γ'相的临界门槛应力.在低施加应力区,位错只能借助于热激活攀移过程通过γ'相.蠕变阻力包括两部分:第一项是位错攀移临界门槛应力,与施加应力无关;第二项是与施加应力有关的阻力项,代表了其他强化机制的贡献.位错攀移机制蠕变阻力的上限是切割机制门槛应力.在3种铸造镍基高温合金中(定向凝固DZ17G合金,IN100合金和IN738合金),对上述模型进行了验证,理论计算应用了SL强化理论,与实测值符合较好.
关键词 铸造镍基高温合金蠕变机制蠕变阻力    
Key words
收稿日期: 2002-04-17     
ZTFLH:  TG132.32  
[1] Ross E W and Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds, Superalloys II, John Wiley and Sons, New York, 1997: 97
[2] Betteridge W, Shaw S W K. Mater Sci Technol, 1987; 3:682
[3] Nabarro F R N, De Villiers H L. The Physics of Creep.Taylor and Francis Ltd, London, 1997: 83
[4] Brown L M, Ham R K. In: Kelly A, Nicholson R B eds, Strengthening Methods in Crystals, Elsevier, Amsterdam, 1971: 9
[5] Schwarz R B, Labusch R. J Appl Phys, 1978; 49: 5174
[6] Reppich B. In: Mughrabi H ed, Plastic Deformation andFracture of Materials, VCH, Weinheim, 1993: 315
[7] Yuan C, Guo J T, Yang H C, Wang S H. Scr Metall, 1998;39: 991
[8] McLean M. Acta Metall, 1985; 33: 545
[9] Coply S M, Kear B H. Trans TMS-AIME, 1967; 239: 984
[10] Shewfelt R S W, Brown L M. Philos Mag A, 1977; 35: 945
[11] Gleiter H, Hornbogen E. Phys Stat Sol, 1965; 12: 235
[12] Reppich B. Acta Metall, 1982; 30: 87
[13] Reppich B, Schepp P, Wehuer G. Acta Metall, 1982; 30:95
[14] Ardell A J. Metall Trans A, 1985; 16A: 2131
[15] Reppich B, Kuhlein W, Meyer G, Puppel D, Schulz M,Schumann G. Mater Sci Eng, 1986; 83: 45
[16] Schanzer S, Nembach E. Acta Metall Mater, 1992; 40: 803
[17] McLean D. Rep Prog Phys, 1966; 29: 1
[18] Gittus J H. Acta Metall, 1974; 22: 789
[19] Weertman J. J Appl Phys, 1957; 28: 362
[20] Weertman J, Weertman J R. In: Cahn R W, Haasen Peds, Physical Metallurgy, Elsevier, Amsterdam, 1983: 3
[21] Gibeling J C, Nix W D. Acta Metall, 1981; 29: 1000
[22] Argon A S, Takeuchi S. Acta Metall, 1981; 29: 1877
[23] Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Perg-amon Press, Oxford, 1982: 21
[24] Jansen A M and Dunand D C. Acta Metall Mater, 1997;45: 4583
[25] Lagneborg R, Bergman B. Met Sci J, 1976; 10: 20
[26] Lupine V. In: Brunetaud R ed, High Temperature Alloys for Gas Turbines 1982, Dordrecht Reidel PublishingCompany, Dordrecht, 1982: 395
[27] Oliver W C, Nix W D. Acta Metall, 1982; 30: 1335
[28] Ajaja O, Howson T E, Purushothaman S, Tien J K. MaterSci Eng, 1980; A44: 165
[29] Davies G C, Jones D R H. Scr Metall, 1996; 35: 523
[30] Weertman J. J Appl Phys, 1957; 28: 362
[31] Barrett C R, Nix W D. Acta Metall, 1961; 13: 1247
[32] Weertman J. Trans ASM, 1968; 61: 681
[33] Davies P W, Wilshire B. Scr Metall, 1971; 5: 475
[34] Davies P W, Wilshire B. Met Sci J, 1975; 9: 248
[35] Takeuchi S, Argon A S. J Mater Sci, 1976; 11: 1542
[35] Hausselt J H, Nix W D. Acta Metall, 1977; 25: 1491
[36] Dennison J P, Holmes P D, Wilshire B. Mater Sci Eng,1978; A33: 35
[37] Purushothaman S, Tien J K. Acta Metall, 1978; 26: 519
[38] Evans W J, Harrison G F. Met Sci J, 1979; 13: 346
[39] Burt H, Dennison J P, Wilshire B. Met Sci J, 1979; 13:295
[40] McLean M. Proc R Soc, 1980; A373: 93
[41] Guo Jianting, Ranucci D, Picco E, Strocchi P M. MetallTrans A, 1983; 14A: 2329
[42] Wukherji D, Cabrisch H, Chen W, Fecht H J, Wahi R P.Acta Metall, 1997; 45: 3143
[43] Nelmes G, Wilshire B. Scr Metall, 1976; 10: 697
[44] Rouault-Rogez H, Dupeux M, Ignat M. Acta Metall, 1994;42: 3137
[45] Stevens R A, Flewitt P E J. Acta Metall, 1981; 29: 867
[46] Lagneborg R. Scr Metall, 1973; 7: 605
[47] Evans H E, Knowles G. Met Sci J, 1980; 14: 262
[48] Guo J T, Yuan C, Yang H C, Lupine V, Maldili M. MetallMater Trans A, 2001; 31A: 1103
[49] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37:237
[50] Henderson P J, McLean M. Acta Metall, 1983; 31: 1203
[51] Douin J, Veyssiere P, Beauchamp P. Philos Mag, 1986;A54: 375
[52] Pollock T M, Argon A S. Acta Metall, 1992; 40: 1
[53] Martenus V, Nembach E. Acta Metall, 1975; 23: 149
[54] Haasen P, Labusch R. Strength of Metals and Alloys. Pergamon Press, Frankfurt, 1979: 639
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[3] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
[4] 徐玲,储昭贶,崔传勇,谷月峰,孙晓峰. 一种镍钴基变形高温合金蠕变变形机制的研究[J]. 金属学报, 2013, 49(7): 863-870.
[5] 陈云翔 严伟 胡平 单以银 杨柯. T/P91钢在高应力条件下蠕变行为的CDM模型模拟[J]. 金属学报, 2011, 47(11): 1372-1377.
[6] 李云; 郭建亭; 尚海波 . 铸造镍高温合金K35 的高温氧化行为[J]. 金属学报, 2003, 39(7): 749-754 .
[7] 崔传勇; 郭建亭; 齐义辉; 叶恒强 . 定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为[J]. 金属学报, 2002, 38(4): 342-346 .
[8] 邱一鸣;朱耀霄. 镍基铸造高温合金中合金元素的偏析规律[J]. 金属学报, 1989, 25(1): 78-80.