Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 863-870    DOI: 10.3724/SP.J.1037.2013.00098
  论文 本期目录 | 过刊浏览 |
一种镍钴基变形高温合金蠕变变形机制的研究
徐玲1),储昭贶1),崔传勇1),谷月峰2),孙晓峰1)
1) 中国科学院金属研究所, 沈阳 110016
2) National Institute for Materials Science, Tsukuba 305-0047, Japan
CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY
XU Ling 1), CHU Zhaokuang1), CUI Chuanyong1), GU Yuefeng2), SUN Xiaofeng 1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) National Institute for Materials Science, Tsukuba 305-0047, Japan
引用本文:

徐玲,储昭贶,崔传勇,谷月峰,孙晓峰. 一种镍钴基变形高温合金蠕变变形机制的研究[J]. 金属学报, 2013, 49(7): 863-870.
XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. Acta Metall Sin, 2013, 49(7): 863-870.

全文: PDF(4095 KB)  
摘要: 

研究了一种新型镍钴基变形高温合金在650­­—815℃和不同加载载荷条件下蠕变后的变形组织.结果表明, 经过固溶热处理后合金中存在2种尺寸的γ′相,当蠕变温度高于725℃时, 大γ′相开始粗化.蠕变温度为650℃时, 合金主要通过位错滑移切割γ′相形成层错的方式变形;蠕变温度在725—760℃之间时, 蠕变变形组织主要为层错和微孪晶. 随着加载载荷和蠕变温度的升高,层错和微孪晶不再独立存在于γ′相中, 而是贯穿γ′相和基体;当蠕变温度升高至815℃时, 合金主要通过位错绕过γ′相的方式变形.

关键词 变形高温合金蠕变机制层错微孪晶    
Abstract

Ni-based wrought superalloys are widely used in the hot section of aircraft gas turbine engines for their capability in retaining strength and resisting creep, fatigue, and oxidation at elevated temperature. With the development of the newer generation turbine disk alloys, it is highly imperative for aircraft engine manufacturers to substantiate the use of the materials by conducting a thorough examination of their mechanical properties. As these components are subjected to elevated temperatures and complex stress state in the service process where time dependent creep is the primary deformation failure mechanism and life—limiting factor for the component, it is of great importance to evaluate the relationship between microstructure, creep behavior and the underlying creep deformation mechanism. Therefore, the main objective of the present research aims at investigating the fundamental relationship between external creep condition and internal creep deformation mechanism in a new wrought superalloy with low stacking fault energy (SFE). In order to study the influences of the loading stress level and temperature on the creep deformation mechanism, stress range of 345—840 MPa and temperature range of 650—815℃ were selected to carry out the creep experiment. The results show that two kinds of γ′ with different diameters distributed in the matrix and the larger one began to coarsen when the creep temperature increased to 725℃. Under creep temperature of 650℃,  the formation of SF resulted from the shearing of γ′ by dislocations dominated the creep deformation. When the temperature range was raised up to 725—760℃, SF and microtwins were the main  microstructures after creep deformation. With further increasingthe temperature and load, instead of accommodating only in the γ′, the SF and microtwins penetrated thewhole γ′ and matrix area. When the temperature was increased to 815℃, the climb/bypass mechanism controlled the creep process.

Key wordswrought superalloy    creep mechanism    stacking fault    microtwin
收稿日期: 2013-02-27     
基金资助:

国家自然科学基金项目51171179, 51128101, 51271174和51001103, 国家重点基础研究发展计划项目2010CB631206及中国科学院“百人计划”项目资助

作者简介: 徐玲, 女, 1983年生, 博士生

[1] Zeng Y P, Liu J Q, Xie X S.  Acta Metall Sin, 2008; 44: 540

(曾燕屏, 刘建强, 谢锡善. 金属学报, 2008; 44: 540)
[2] Yang J, Dong J X, Jia J, Tao Y.  Acta Metall Sin, 2013; 49: 71
(杨建, 董建新, 贾建, 陶宇. 金属学报, 2013; 49: 71)
[3] Hardy M C, Shen G, Shankar R. In: Green K A, Pollock T M, Harada H eds.,Superalloys 2004. Warrendale, PA: The Minerals, Metals and Materials Society, 2004: 83
[4] Locq D, Caron P, Raujol S, Pettinari--Sturmel F, Coujou A. In: Green K A,Pollock T M, Harada H eds.,  Superalloys 2004. Warrendale, PA: The Minerals, Metals and Materials Society, 2004: 179
[5] Cui C Y, Sato A, Gu Y F, Harada H.  Metall Mater Trans, 2005; 36A: 2921
[6] Gu Y F, Harada H, Cui C Y, Ping D H, Sato A, Fujioka J.  Scr Mater, 2006; 55: 815
[7] Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T,Fujioka J. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmnn M G, Huron E S,Woodard S A eds.,  Superalloys 2008. Warrendale, PA: The Minerals, Metals and Materials Society, 2008: 14
[8] Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T,Fujioka J. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E,Portella P D, Telesman J eds.,  Superalloys 2012. Warrendale, PA: The Minerals, Metals and Materials Society, 2012: 903
[9] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D.  Acta Metall Sin, 2010; 46: 334
(王衣, 孙峰, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)
[10] Gu Y F, Fukuda T, Cui C Y, Harada H, Mitsuhashi A, Yokokawa T, Fujioka J,Koizumi Y, Kobayashi T.  Metall Mater Trans, 2009; 40A: 3047
[11] Yuan Y, GuY F, Osada T, Zhong Z H, Yokokawa T, Harada H.  Scr Mater, 2012; 67: 137
[12] Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H.  Mater Sci Eng, 2012; A552: 464
[13] Cui C Y, Gu Y F, Ping D H, Harada H.  Metall Mater Trans, 2009; 40A: 282
[14] Cui C Y, Gu Y F, Ping D H, Harada H, Fukuda T.   Mater Sci Eng, 2008; A485: 651
[15] Yuan Y, Gu Y F, Cui C Y, Osada T, Zhong Z H, Tetsui T, Yokokawa T, Harada H.J Mater Res, 2011; 26: 2833
[16] Yang J X, Li J G, Wang M, Wang Y H, Jin T, Sun X F.  Acta Metall Sin, 2012; 48: 654
(杨金侠, 李金国, 王猛, 王彦辉, 金涛, 孙晓峰. 金属学报, 2012; 48: 654)
[17] Boussinot G, Finel A, Le Bouar Y.  Acta Mater, 2009; 57: 921
[18] Xiao X, Zhou L Z, Guo J T.  Acta Metall Sin, 2001; 37: 1159
(肖璇, 周兰章, 郭建亭. 金属学报, 2001; 37: 1159)
[19] Pope D P, Ezz S S.  Int Met Rev, 1984; 29: 136
[20] Decamps B, Morton A J, Condat M.  Philos Mag, 1991; 64A: 641
[21] Zhang Y, Tao N R, Lu K.  Scr Mater, 2009; 60: 211
[22] Condat M, Decamps B.  Scr Metall, 1987; 21: 607
[23] Zhang Z J, Zhang P, Li L L, Zhang Z F.  Acta Mater, 2012; 60: 3113
[24] Reppich B, Schepp P, Wehner G.  Acta Metall, 1982; 30: 95
[25] Yuan Y, Gu Y F, Zhong Z H, Osada T, Cui C Y, Tetsui T, Yokokawa T, Harada H.J Micros, 2012; 248: 34
[26] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H.Mater Sci Eng, 2011; A528: 5106
[27] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J.  Acta Mater, 2005; 53: 3041
[28] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C , Wang Y, Mills M J.  Prog Mater Sci, 2009; 54: 839
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[5] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[6] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
[7] 张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.
[8] 向雪梅, 江河, 董建新, 姚志浩. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988-996.
[9] 谭海兵, 黄烁, 王静, 李姝, 朱昌洪, 钟燕, 钟世林, 何爱杰. 白斑缺陷对GH4586合金组织和力学性能的影响[J]. 金属学报, 2020, 56(10): 1411-1422.
[10] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[12] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[13] 苏勇,田素贵,于慧臣,于莉丽. 镍基单晶高温合金中温稳态蠕变期间的变形机制*[J]. 金属学报, 2015, 51(12): 1472-1480.
[14] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[15] 薛鹏, 肖伯律, 马宗义. 搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*[J]. 金属学报, 2014, 50(2): 245-251.