Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1372-1377    DOI: 10.3724/SP.J.1037.2011.00309
  论文 本期目录 | 过刊浏览 |
T/P91钢在高应力条件下蠕变行为的CDM模型模拟
陈云翔1, 2), 严伟1), 胡平1, 2), 单以银1), 杨柯1)
1) 中国科学院金属研究所, 沈阳 110016
2) 中国科学院研究生院, 北京 100049
CDM MODELING OF CREEP BEHAVIOR OF T/P91 STEEL UNDER HIGH STRESSES  
CHEN Yunxiang1, 2), YAN Wei1), HU Ping1, 2), SHAN Yiyin1), YANG Ke1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Graduate School of Chinese Academy of Sciences, Beijing 100049
引用本文:

陈云翔 严伟 胡平 单以银 杨柯. T/P91钢在高应力条件下蠕变行为的CDM模型模拟[J]. 金属学报, 2011, 47(11): 1372-1377.
, , , , . CDM MODELING OF CREEP BEHAVIOR OF T/P91 STEEL UNDER HIGH STRESSES  [J]. Acta Metall Sin, 2011, 47(11): 1372-1377.

全文: PDF(659 KB)  
摘要: 通过对超临界火电机组用T/P91耐热钢的蠕变数据分析, 探讨了T/P91钢在600℃下不同应力范围内的蠕变机制以及服役过程中的蠕变损伤, 并使用基于材料物理本质建立的CDM(continuum damage mechanics)模型来模拟高应力范围内T/P91钢的蠕变曲线, 将模拟结果与文献中的实验数据进行对比, 表明模拟结果是可信的.
关键词 T/P91钢蠕变机制蠕变损伤CDM模型    
Abstract:For safe use of the equipments in power plants, creep life prediction of the material served at high temperature is an important issue. With the purpose of the existing problems in overestimation of creep strengths, it is essential to analyze the creep mechanism and the creep damage to material in serving. In the present work, through analysis on creep curves of the T/P91 thermal resistant steel served in the super critical steam conditioned thermal power plants, the creep mechanism and the creep damage of T/P91 steel during creeping at 600℃ were discussed, and CDM (continuum damage mechanics) model established based on the physical nature was used to simulate the creep curves of T/P91 steel under high stresses. The modeled creep curves are good in agreement with the experimental data.
Key wordsT/P91 steel    creep mechanism    creep damage    CDM model
收稿日期: 2011-05-16     
基金资助:

国家重点基础研究发展计划项目2008CB717802和2010CB630800, 国际热核聚变实验堆ITER计划专项项目2009GB109002及中国科学院知识创新工程重要影响方向项目KJCX2-YW-N35资助

作者简介: 陈云翔, 男, 1983年生, 博士生
[1] Vaillant J C, Vandenberghe B, Hahn B, Heuser, Jochum C. Int J Pressure Vessel Pip, 2008; 85: 38

[2] Orlova A, Bursik J, Kucharova K, Sklenicka V. Mater Sci Eng, 1998; A245: 39

[3] Keller C, Margulies M M, Hadjem-Hamouche M, Guillot I. Mater Sci Eng, 2010; A527: 6758

[4] Larson F R, Miller J. Trans ASM, 1952: 74

[5] Tu S D, Xuan F F,WangWZ. Acta Metall Sin, 2009; 45: 781

(涂善东, 轩福负, 王卫泽. 金属学报, 2009; 45: 781)

[6] Kimura K, Toda Y, Kushima H, Sawada K. Int J Pressure Vessel Pip, 2010; 87: 282

[7] Hasegawa T, Abe Y R, Tomita Y, Maruyama N, Sugiyama M. ISIJ Int, 2001; 41: 922

[8] Dyson B F. J Pressure Vessel Technol, 2000; 22: 81

[9] Hyde T H, Becker A A, Sun W, Williams. Int J Pressure Vessel Pip, 2006; 83: 853

[10] Petry C, Lindet G. Int J Pressure Vessel Pip, 2009; 86: 486

[11] Mustata R, Hayhurst D R. Int J Pressure Vessel Pip, 2005; 82: 363

[12] Yin Y F, Faulkner R G. Mater Sci Technol, 2005; 21: 1239

[13] Yin Y F, Faulkner R G. Mater Sci Technol, 2006; 22: 929

[14] Yin Y F, Faulkner R G. New Developments on Metallurgy and Applications of High Strength Steels. Warrendale, PA: TMS, 2008: 283

[15] Zhang J S. High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2010: 1

[16] Kachanov L M. Izv Akad Nauk SSSR Ser Fiz, 1958; 8: 26

[17] Rabotnov Y N. Creep of Structural Elements. Moskva: Nauka, 1966: 1

[18] Ion J C, Barbosa A, Ashby M F, Dyson B F, McLean M. The Modelling of Creep for Engineering Design (NPL–DMA(A)–115). London: British Library Document Supply Centre, 1986

[19] Dimmler G, Weinert P, Cerjak H. Int J Pressure Vessel Pip, 2008; 85: 55

[20] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181

[21] Nabarro F R N. Metall Mater Trans, 2010; 41A: 159

[22] Spigarelli S, Cerri E, Bianchi P, Evangelista E. Mater Sci Technol, 1999; 15: 1433

[23] Kloc L, Skienicka V, Ventruba J. Mater Sci Eng, 2001; A319–321: 774

[24] Kimura K, Kushima H, Sawada K. Mater Sci Eng, 2009; A510–511: 58

[25] Spigarelli S, Kloc L, Bontempi P. Scr Mater, 1997; 37: 399

[26] Lee L S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270

[27] Hasegawa T, Abe Y R, Tomita Y. ISIJ Int, 2001; 41: 922

[28] Paul V T, Saroja S, Vijayalakshmi M. J Nucl Mater, 2008; 378: 273

[29] Hald J. Int J Pressure Vessel Pip, 2008; 85: 30

[30] Sawada K, Kushima H, Kimura K, Tabuchi M. ISIJ Int, 2007; 47: 733

[31] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 1

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 1)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[3] 徐玲,储昭贶,崔传勇,谷月峰,孙晓峰. 一种镍钴基变形高温合金蠕变变形机制的研究[J]. 金属学报, 2013, 49(7): 863-870.
[4] 张国栋; 周昌玉 . 焊接接头残余应力及蠕变损伤的有限元模拟[J]. 金属学报, 2008, 44(7): 848-852 .
[5] 岳珠峰 . 平头压痕蠕变损伤实验的有限元模拟分析[J]. 金属学报, 2005, 41(1): 15-.
[6] 岳珠峰; 吕震宙 . 双剪切试样在镍基单晶合金蠕变变形损伤和寿命研究中的应用[J]. 金属学报, 2002, 38(8): 809-813 .
[7] 崔传勇; 郭建亭; 齐义辉; 叶恒强 . 定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为[J]. 金属学报, 2002, 38(4): 342-346 .
[8] 袁超; 郭建亭; 杨洪才 . 铸造镍基高温合金的蠕变阻力[J]. 金属学报, 2002, 38(11): 1149-1156 .
[9] 岳珠峰;吕震宙;郑长卿. 镍基单晶高温合金的蠕变损伤规律研究[J]. 金属学报, 1995, 31(8): 370-375.