Please wait a minute...
金属学报  1992, Vol. 28 Issue (1): 85-89    
  论文 本期目录 | 过刊浏览 |
铸铁熔体中石墨生长方式的转变与变质机理的探讨
刘永坤;杨士浩
西南技术工程研究所;山东工业大学
GROWTH MODE AND MODIFICATION OF GRAPHITE IN CAST IRON MELT
LIU Yongkun;YANG Shihao Southwestern Institute of Technology and Engineering; Chongqing; Shandong Polytechnical University; Jinan
引用本文:

刘永坤;杨士浩. 铸铁熔体中石墨生长方式的转变与变质机理的探讨[J]. 金属学报, 1992, 28(1): 85-89.
, . GROWTH MODE AND MODIFICATION OF GRAPHITE IN CAST IRON MELT[J]. Acta Metall Sin, 1992, 28(1): 85-89.

全文: PDF(620 KB)  
摘要: 采用液淬技术,对铸铁熔体中石墨生长方式的转变进行了研究,提出了螺旋台阶增殖的概念并给出了两个基本模型。指出:螺旋台阶的增殖是石墨晶体生长方式转变的实质,变质元素Ce能促使石墨由片状转变为球状,初步揭示了石墨的各种结晶形貌形成的原因。
关键词 石墨结晶形貌生长方式螺旋台阶    
Abstract:Using liquid quenching technique, the change of growth mode of graphite in cast iron melt was analysed. Based on the interface structure theory of crystal growth, the concept of multiplication of spiral growth steps was advanced and two basic multiplication models were given out. It was proposed that multiplication of spiral steps is responsible for the changeof growth mode of graphite in cast iron melt. The modifying elements such as cerium promote multiplication of spiral steps, which is regarded as the core of modification. Origination of screwdislocation and branch of the sector blocks in radius direction, both of which are essential to spheroidization of graphite in the melt, are caused by multiplication of spiral steps; and so is thickening of graphite plates.
Key wordsgraphite    crystallization morphology    growth mode    spiral growth steps
收稿日期: 1992-01-18     
1 Hillert M, Lindblom Y. J Iron Steel Inst, 1954; 176: 388
2 Minkoff I, Nixon W C. J Appl Phys, 1966; 37: 4848--4855
3 陈熙琛.机械工程学报,1979;15(2) :122--152
4 Minkoff I,Lux B.见:Lux B, Minkoff I, Mollark F主编,上海工业大学,华中工学院,浙江大学合译.铸铁冶金学.北京:机械工业出版社,1983:315--328
5 Liu P C, Loper C R Jr., Kimura T, Park H K. Trans Am Foundrymen's Soc, 1980; 88: 97--118
6 刘永坤.山东工业大学硕士学位论文,1987
7 Jackson K A. In: Doremus R H, Robert B W, Turnbull D eds., Growth and Perfection of Crystals, Proc Int Conf on Crystal Growth, held Cooperstown, New York, August 27--29, 1958, New York: John Wiley Sons, 1958: 319
8 Purdy G R, Audier M. In: Fredriksson H, Hillert M eds., The Physical Metallurgy of Cast Iron. Proc 3rd Int Symp on the Physical Metalluregy of Cast Iron, Stockholm, Sweden, August 29--31, 1984. Elsevier Science, 1985: 13--24
9 Double D D, Hellawell A. Acta Metall, 1974; 22: 481--487
10 宋维锡,杨文英.金属学报,1987;23:B324
[1] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[2] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[4] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[5] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[6] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[7] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[8] 付伟,宋晓国,龙隆,柴鉴航,冯吉才,王国栋. 石墨/紫铜间接钎焊接头的界面组织及力学性能*[J]. 金属学报, 2016, 52(6): 734-740.
[9] 薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
[10] 张新宁,曲迎东,李荣德,尤俊华. 铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*[J]. 金属学报, 2015, 51(11): 1333-1340.
[11] 谢天生; 戴贵平; 成会明; 范兆忠; 叶恒强 . 高定向石墨表面激光溅射硼及超结构的扫描隧道显微镜观察[J]. 金属学报, 1999, 35(7): 685-688 .
[12] 胡晓军;薛向欣;段培宁;黄晓煜. 铁液在自焙炭块中的渗透过程[J]. 金属学报, 1998, 34(4): 384-387.
[13] 薛向欣;黄晓煜;杜英敏;张殿有. 石墨化率不同的自焙炭块的热扩散率[J]. 金属学报, 1996, 32(11): 1227-1232.
[14] 蒋建清. 石墨形态和基体组织对铸铁断裂过程的影响[J]. 金属学报, 1994, 30(8): 374-379.
[15] 杨海宁;顾明元;蒋为吉;张国定. 石墨纤维增强Al基复合材料界面反应机制研究[J]. 金属学报, 1994, 30(20): 379-384.