Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 594-600    DOI: 10.3724/SP.J.1037.2013.00504
  本期目录 | 过刊浏览 |
超高压凝固Mg82.13Zn13.85Y4.02合金的组织及室温压缩性能*
董允1, 林小娉1(), 徐瑞2, 樊志斌1, 叶杰1, 王哲2
1 东北大学材料与冶金学院, 沈阳 110819
2 燕山大学材料科学与工程学院, 亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004
MICROSTRUCTURE AND ROOM TEMPERATURE COMPRESSION PROPERTIES OF Mg82.13Zn13.85Y4.02 ALLOY SOLIDIFIED UNDER SUPER-HIGH PRESSURE
DONG Yun1, LIN Xiaoping1(), XU Rui2, FAN Zhibin1, YE Jie1, WANG Zhe2
1 Department of Materials Science and Engineering, Northeastern University, Shenyang 110819
2 State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
引用本文:

董允, 林小娉, 徐瑞, 樊志斌, 叶杰, 王哲. 超高压凝固Mg82.13Zn13.85Y4.02合金的组织及室温压缩性能*[J]. 金属学报, 2014, 50(5): 594-600.
Yun DONG, Xiaoping LIN, Rui XU, Zhibin FAN, Jie YE, Zhe WANG. MICROSTRUCTURE AND ROOM TEMPERATURE COMPRESSION PROPERTIES OF Mg82.13Zn13.85Y4.02 ALLOY SOLIDIFIED UNDER SUPER-HIGH PRESSURE[J]. Acta Metall Sin, 2014, 50(5): 594-600.

全文: PDF(12128 KB)   HTML
摘要: 

研究不同压力凝固条件下Mg82.13Zn13.85Y4.02 (质量分数, %)合金微观组织和力学性能, 发现合金的凝固组织是由a-Mg基体, W-Mg3Y2Zn3和I-Mg3YZn6相组成. 其中, 常压下凝固组织中的a-Mg枝晶间分布着由共晶组织形态和杆状第二相组成的网状结构. 随着凝固压力的增大, 共晶网逐渐断开, 其数量逐渐减少, a-Mg基体中Zn的溶解度逐渐增大. 常压凝固合金的室温压缩强度为344 MPa, 屈服强度为331 MPa, 相对压缩率为16%. 6 GPa, 1250 ℃凝固合金的室温压缩强度可达455 MPa, 屈服强度426 MPa, 相对压缩率为25%. 常压凝固合金的压缩断裂模式为典型的解理断裂, 且解理面大而光滑平整, 高压凝固合金的压缩断口解理面较小, 并出现撕裂岭和类似“撕裂韧窝”的形貌特征, 解理断裂的程度有所降低.

关键词 Mg82.13Zn13.85Y4.02合金高压凝固应力-应变曲线解理面    
Abstract

By the investigation of the microstructures of Mg82.13Zn13.85Y4.02 (mass fraction, %) alloy solidified under different pressure, it is found that the solidification microstructure of the alloy is consisted of a-Mg matrix, W-Mg3Y2Zn3 phase and I-Mg3YZn6 phase. In the microstructure of the alloy solidified under ambient pressure, the networks of the secondary phases of eutectic-like and rod-like shape are distributed in the a-Mg interdendritic space. As the solidification pressure increases, eutectic network is disconnected gradually and the amount of eutectic is diminished and the solubility of Zn in a-Mg rises gradually. The results of the measurement of the mechanical properties show that the compression strength, the yield strength and the compressibility of the alloy sample solidified under ambient pressure is 344 MPa, 331 MPa and 16% respectively. However, the compression strength, the yield strength and the compressibility of the alloy sample solidified from 1250 ℃ under 6 GPa is 455 MPa, 426 MPa and 25%, respectively. The observation of fracture surfaces shows that, in the alloy solidified under high pressure, the cleavage surface of the compressed fracture is decreased, and the tear ridge and tearing dimple can be found. The degree of cleavage fracture is decreased.

Key wordsMg82.13Zn13.85Y4.02 alloy    high pressure solidification    stress-strain curve    cleavage surface
收稿日期: 2013-08-21     
ZTFLH:  TG146.2  
基金资助:* 河北省自然科学基金项目E2013501096, 辽宁省自然科学基金项目20112063和东北大学秦皇岛分校科技支撑项目XNK201305资助
作者简介: null

董 允, 男, 1959年生, 教授, 博士

图1  
图2  
图3  
图4  
图5  
图6  
图7  
[1] Somekawa H, Watanabe H, Mukai T. Mater Lett, 2011; 65: 3251
[2] Xu S W, Zheng M Y, Kamado S, Wu K, Wang G J, Lv X Y. Mater Sci Eng, 2011; A528: 4055
[3] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[4] Chen B, Chen L, Lin D L, Zeng X Q. Trans Nonferrous Met Soc China, 2012; 22: 773
[5] Wang J F, Gao S, Song P F, Huang X F, Shi Z Z, Pan F S. J Alloys Compd, 2011; 509: 8567
[6] Yang W P, Guo X F, Lu Z X. Trans Nonferrous Met Soc China, 2012; 22: 786
[7] Lee J Y, Kim D H, Lim H K, Kim D H. Mater Lett, 2005; 59: 3801
[8] Tong J, Huang H, Yuan G Y, Ding W J. Acta Metall Sin, 2011; 47:1520
[8] (童 健, 黄 华, 袁广银,丁文江. 金属学报, 2011; 47: 1520)
[9] Somekawa H, Singh A, Mukai T. Adv Eng Mater, 2009; 11: 782
[10] Luo Z P, Zhang S Q, Tang Y L, Zhao D S. Scr Metall Mater, 1993; 28: 1513
[11] Tsai A, Niikura A, Inoue A. J Mater Res, 1997; 12: 565
[12] Батншeв А И,translated byZhang J S. Crystallization of Metal and Alloys Under Pressure. Harbin: Harbin University of Techonology Press, 1987: 23
[12] (Батншeв А И 著,张锦升 译. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987: 23)
[13] Qu Y D, Li R D, Yuan X G, Li C X, Xiang Q C. Foundry, 2005; 54: 539
[13] (曲迎东, 李荣德, 袁晓光, 李晨曦, 向青春. 铸造, 2005; 54: 539)
[14] Zhang G Z, Yu X F, Wang X Y, Jia G L, Gao Y Y. Acta Metall Sin, 1999; 35: 285
[14] (张国志, 于溪凤, 王向阳, 贾光霖, 高允彦. 金属学报, 1999; 35: 285)
[15] Jie J C, Zou C M, Wang H W, Wei Z J. J Alloys Compd, 2010; 506: L12
[16] Chen Y, Liu L, Wang Y H, Liu J H, Zhang R J. Trans Nonferrous Met Soc China, 2011; 21: 2205
[17] Wang Z X, Lu J B, Xi Y J, Fan J W. J Alloys Compd, 2010; 492: 529
[18] Wang D Q, Yang G C, Lin L, Feng Z G. Mater Lett, 2008; 62: 1711
[19] Wang Z L, Zhang T, Li L, Zhou Y B, Wang H W, Wei Z J. Chin J Nonferrous Met, 2012; 22: 1006
[19] (王振玲, 张 涛, 李 莉, 周月波, 王宏伟, 魏尊杰. 中国有色金属学报, 2012; 22: 1006)
[20] Sun S H,Li J,Xu R,Zhao H L,Liu R P. Chin J High Pressure Phys, 2008; 22: 434
[20] (孙淑华, 李 杰, 徐 瑞, 赵海丽, 刘日平. 高压物理学报, 2008; 22: 434)
[21] Lin X P, Dong Y, Xu R, Sun G F, Jiao S H. Acta Metall Sin, 2011; 47: 1550
[21] (林小娉, 董 允, 徐 瑞, 孙桂芳, 焦世辉. 金属学报, 2011; 47: 1550)
[22] Lin X P, Dong Y, Xu R, Zheng R G. Rare Met Mater Eng, 2013; 42: 2309
[22] (林小娉, 董 允, 徐 瑞, 郑润国. 稀有金属材料与工程, 2013; 42: 2309 )
[23] Li B, Wang H W, Jie J C, Wei Z J. J Alloys Compd, 2011; 509: 3387
[24] Ding W J. The Science and Technology of Mg Alloy. Beijing: Science Press, 2007: 1
[24] (丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007: 1)
[25] Jiang X S,Zhao H. Quick Reference for Microscopic Fracture of Steel. Beijing: Machinery Industry Press, 2010: 45
[25] (姜锡山,赵 晗. 钢铁显微断口速查手册. 北京: 机械工业出版社, 2010: 45)
[1] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[2] 初冠南,林艳丽,宋伟宁,张林. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究[J]. 金属学报, 2017, 53(1): 114-122.
[3] 许德美, 秦高梧, 李峰, 王战宏, 钟景明, 李志年, 何力军. 多晶Be室温拉伸变形和断裂行为[J]. 金属学报, 2014, 50(9): 1078-1086.
[4] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[5] 林小娉 董允 徐瑞 孙桂芳 焦世辉. 超高压凝固条件下Mg-6Zn-3Y合金的晶体形态及相演变[J]. 金属学报, 2011, 47(12): 1550-1554.
[6] 林艳丽 何祝斌 苑世剑. 管材自由胀形时胀形区轮廓形状的影响因素[J]. 金属学报, 2010, 46(6): 729-735.
[7] 张国导; 郝兆印 . 超高压凝固Al-Si合金的非平衡组织[J]. 金属学报, 1999, 35(3): 285-288 .
[8] 李小武;王中光;李守新. [■12]双滑移取向铜单晶体的循环应变硬化及饱和[J]. 金属学报, 1998, 34(8): 864-869.