Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1078-1086    DOI: 10.11900/0412.1961.2014.00062
  本期目录 | 过刊浏览 |
多晶Be室温拉伸变形和断裂行为
许德美1,2, 秦高梧1(), 李峰2, 王战宏2, 钟景明2, 李志年2, 何力军3
1 东北大学材料各向异性与织构教育部重点试验室, 沈阳110819
2 西北稀有金属材料研究院宁夏特种材料重点实验室, 石嘴山753000
3 宁夏大学宁夏光伏材料重点实验室, 银川750021
TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE
XU Demei1,2, QIN Gaowu1(), LI Feng2, WANG Zhanhong2, ZHONG Jingming2, LI Zhinian2, HE Lijun3
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819
2 Key Laboratory of Ningxia for Rare Materials, Northwest Rare Metal Materials Research Institute, Shizuishan 753000
3 Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021
引用本文:

许德美, 秦高梧, 李峰, 王战宏, 钟景明, 李志年, 何力军. 多晶Be室温拉伸变形和断裂行为[J]. 金属学报, 2014, 50(9): 1078-1086.
Demei XU, Gaowu QIN, Feng LI, Zhanhong WANG, Jingming ZHONG, Zhinian LI, Lijun HE. TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE[J]. Acta Metall Sin, 2014, 50(9): 1078-1086.

全文: PDF(9044 KB)   HTML
摘要: 

通过SEM原位拉伸实验观察室温下多晶Be的变形、裂纹萌生和扩展过程, 利用电子背散射衍射(EBSD)标定断裂解理面, 结合OM分析孪晶变形, 研究多晶Be室温拉伸变形和断裂行为及其机理. 结果表明, 室温拉伸应力条件下, 多晶Be的滑移和孪晶变形均难以发生. 滑移带仅在少数取向有利的晶粒中出现, 最终孪晶变形晶粒约占晶粒总数的5%. 变形过程中存在(0001)基面和{1010}柱面之间的交滑移. 多晶Be的微裂纹起源于晶界一侧, 发生穿晶扩展后, 在另一侧晶界终止, 裂纹萌生符合Stroh位错塞积生裂纹理论. 因晶界对裂纹强烈的阻碍作用, 多晶Be的裂纹长大依靠不同微裂纹之间的汇合, 汇合路径有解理台阶和撕裂2种. 多晶Be断裂基本解理面为(0001)基面和{1010}柱面, 两者均是多晶Be解理萌生和扩展的主要路径. 未观察到因孪晶变形诱发的微裂纹.

关键词 多晶Be断裂机理解理面孪晶变形    
Abstract

Deformation and fracture behaviors as well as their mechanisms of polycrystalline beryllium at room temperature were systematically studied by in situ tensile test in SEM, characterizing fracture cleavage planes by electron backscattered diffraction (EBSD) technique, and twinning deformation analyzing by OM. The results show that slip and twinning deformation of polycrystalline beryllium are difficult to occur under tensile stress at room temperature. Slip bands happen only in some grains with a favorable orientation, and finally twinning deformation grain number accounts for only about 5% of the total grains. There exists the cross slip between (0001) basal plane and {1010} prismatic plane in the deformation process. Microcracks usually initiate at one grain boundary, then propagate by a transgranular way and terminate at the other side of the grain boundary in polycrystalline beryllium. Crack initiation of polycrystalline beryllium is in accordance with Stroh dislocation pile-up crack theory. The growth of microcracks have to depend on different microcracks merging by cleavage steps or tearing way due to a strong blocking effect of grain boundaries on the microcracks propagation. Basal cleavage planes of polycrystalline beryllium are determined to be (0001) and {1010} planes. Both of them are the main paths of cleavage crack initiation and propagation of polycrystalline beryllium. It is not observed that twinning deformation induces nucleation of microcracks.

Key wordspolycrystalline Be    fracture mechanism    cleavage plane    twinning deformation
    
ZTFLH:  TG146.2  
基金资助:*军品配套科研资助项目JPPT-125-GH-036
作者简介: null

许德美, 女, 1973年生, 正高职高级工程师, 博士生

图1  SEM原位拉伸样品示意图
图2  多晶Be的变形特征
图3  多晶Be变形前后的显微组织
图4  多晶Be微裂纹的萌生、长大及在另一侧晶界终止
图5  多晶Be晶粒内部多个平行微裂纹以解理台阶和撕裂的方式汇合
图6  多晶Be晶界对微裂纹生长的阻碍作用
图7  多晶Be微裂纹稳态长大过程
图8  多晶Be断口解理晶面指数标定
[1] Goldberg A. Atomic, Crystal, Elastic, Thermal, Nuclear and Other Properties of Beryllium. Livermore: Lawrence Livermore National Laboratory, 2006: 3
[2] Goldberg A, Olson D L, Jacobson L A. In: Walsh K A ed., Beryllium Chemistry and Processing. Materials Park, OH: The Materials Information Society/ASM International, 2009: 151
[3] Marder J M. In: ASM International ed., Metals Handbook: Powder Metallurgy. Vol.7, 9th Ed., Materials Park, OH: American Society for Metals, 1984: 755
[4] Webster D. In: The Metals Society ed., Berylllium 1977—Fourth International Conference on Beryllium, London: The Royal Society, 1977: 1/1
[5] Fritz A. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 7
[6] Saxton H J,London G J. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 115
[7] Lemon D D, Brown W F. J Test Eval, 1985; 13: 152
[8] Burns S J, Gurland J, Richman M H. Metallography, 1971; 4: 533
[9] Cooper R E. J Test Eval, 1975; 3: 87
[10] Cooper R E. Int J Fract, 1975; 11: 649
[11] Conrad H, Hurd J, Woodard D. J Test Eval, 1973; 1: 88
[12] Jones M H, Bubsey R T, Brown W F. J Test Eval, 1973; 1: 100
[13] Shabbits W O, Logsdon W A. J Test Eval, 1973; 1: 110
[14] Kornienko L A, Papirov I I. Met Sci Heat Treat, 1970; 12: 885
[15] Perra M W, Finnie I. J Mater Sci, 1977; 12: 1519
[16] Bat'kov Yu V, Golubev V K, Sobolev Yu S, Trunin I R, Fishman N D. J Appl Mech Tech Phys, 1996; 37: 484
[17] Chaouadi R, Moons F, Puzzolante J L.Tensile and Fracture Toughness Test Results of Neutron Irradiated Beryllium. Tokyo: Japan Atomic Energy Research Institute, 1998: 1
[18] Moons F, Chaouadi R, Puzzolante J L. Fusion Eng Des, 1998; 41: 187
[19] Taylor G I. J Inst Met, 1938; 62: 307.
[20] von Mises R, Angew Z. Math Mech, 1928; 8: 161.
[21] Tuer G L, Kaufmann A R. In: White D W, Burke J E eds., The Metal Beryllium. Cleveland: American Society for Metals, 1955: 372
[22] Greetham G, Martin A J. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 47
[23] Martin A J, Ellis G C. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 3
[24] Bennett W D. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall. Ltd, 1963: 33
[25] Greenspan J. In: Hausner H H ed., Beryllium: its Metallurgy and Properties. Berkeley and Los Angeles: University of California Press, 1965: 240
[26] Gindin I A, Grinyuk V N, Ivanov V Y, Lazareva M B, Papirov I I, Starodubov Y D, Tikhinskiy G F, Finkel V A. Phys Met Metall, 1968; 26: 152
[27] Yoo M H. Metall Trans, 1981; 12A: 409
[28] Liang N G, Liu H Q, Wang Z Q. Sci China, 1995; 25A: 859
[28] (梁乃刚, 刘洪秋, 王自强. 中国科学, 1995; 25A: 859)
[29] Xu B A,Li X Z. Mechanics of Materials. Shanghai: Shanghai Jiao Tong University Press, 1988: 28
[29] (许本安,李秀治. 材料力学. 上海: 上海交通大学出版社, 1988: 28)
[30] Shi D K. Fundamentals of Materials Science. 2nd Ed., Beijing: China Machine Press, 2003: 334
[30] (石德珂.材料科学基础. 第二版, 北京: 机械工业出版社, 2003: 334)
[31] Ha K F. Microscopic Theory of the Metals Mechanical Properties. Beijing: Science Press,1983: 305, 610-615
[31] (哈宽富.金属力学性质的微观理论. 北京: 科学出版社, 1983: 305, 610-615)
[32] Stroh A N. Proc Math Phys Sci, 1954; 223: 404
[33] Stroh A N. Proc Math Phys Sci, 1955; 232: 548
[34] Stroh A N. Philos Mag, 1958; 3: 625
[35] Xu D M, Li F, Wang D X, Ren Y P, Pei W L, Qin G W. China J Rare Met, 2010; 34: 844
[35] (许德美, 李 峰, 王东新, 任玉平, 裴文利, 秦高梧. 稀有金属, 2010; 34: 844)
[36] Stonehouse A J. J Vac Sci Technol, 1986; 4A: 1163
[37] Matysina Z A. Mater Chem Phys, 1999; 60: 70
[38] Gilman J J. Trans Am Inst Min Metall Eng, 1956; 206: 1326
[39] Wang L,Lv J Y,Guan F A. Metal Mechanical Property. 5th Ed., Shenyang: Northeastern University Press, 1993: 145
[39] (王 磊,吕俊英,关福安. 金属力学性质. 第五版. 沈阳: 东北大学出版社, 1993: 145)
[40] Li J. Fundamentals of Materials Science. Beijing: Metallurgical Industry Press, 2006: 216
[40] (李见.材料科学基础. 北京: 冶金工业出版社, 2006: 216)
[1] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[2] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[3] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[4] 董允, 林小娉, 徐瑞, 樊志斌, 叶杰, 王哲. 超高压凝固Mg82.13Zn13.85Y4.02合金的组织及室温压缩性能*[J]. 金属学报, 2014, 50(5): 594-600.
[5] 陈荣石;郭建亭;殷为民;周继扬. NiAl基多相金属间化合物的显微组织、超塑性研究[J]. 金属学报, 1998, 34(11): 1121-1125.
[6] 张继;张志宏;邹敦叙;仲增墉. TiAl合金细小全层片组织断裂机理[J]. 金属学报, 1996, 32(10): 1044-1048.
[7] 张跃;褚武扬;袁润章;王燕斌;欧阳世翕;肖纪美. Ti_3Al金属间化合物氢致解理断裂及其机理[J]. 金属学报, 1995, 31(21): 406-412.
[8] 邢志强;程咏梅;褚武扬. 两种Ti_3Al在水中的低频疲劳研究[J]. 金属学报, 1995, 31(1): 34-39.
[9] 黄正;姚枚. 解理裂缝过界扩展模型[J]. 金属学报, 1990, 26(1): 53-57.