Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1025-1032    DOI: 10.3724/SP.J.1037.2012.00147
  论文 本期目录 | 过刊浏览 |
穿孔等离子弧焊接熔池流动和传热过程的数值模拟
张涛, 武传松, 陈茂爱
山东大学材料液固结构演变与加工教育部重点实验室, 济南 250061
MODELLING FLUID FLOW AND HEAT TRANSFER PHENOMENA IN KEYHOLING STAGE OF PLASMA ARC WELDING
ZHANG Tao, WU Chuansong, CHEN Maoai
Key Lab for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
引用本文:

张涛 武传松 陈茂爱. 穿孔等离子弧焊接熔池流动和传热过程的数值模拟[J]. 金属学报, 2012, 48(9): 1025-1032.
, , . MODELLING FLUID FLOW AND HEAT TRANSFER PHENOMENA IN KEYHOLING STAGE OF PLASMA ARC WELDING[J]. Acta Metall Sin, 2012, 48(9): 1025-1032.

全文: PDF(3448 KB)  
摘要: 考虑熔池与小孔的耦合作用, 建立了穿孔等离子弧焊接三维瞬态熔池流体流动和传热过程的数学模型. 采用流体体积函数法追踪小孔的形状与尺寸, 利用焓--孔隙度法处理凝固熔化过程中的相变潜热以及动量损耗问题. 针对穿孔等离子弧焊接的工艺特点, 建立了随小孔深度动态调整的组合式体积热源模式. 对8 mm板厚的不锈钢工件进行了穿孔焊接工艺实验和数值模拟, 获得了等离子弧焊接过程中熔池出现、小孔形成、流场与温度场演变、工件熔透与穿孔等动态过程的基础数据, 展示了小孔穿孔前后熔池流体流动规律. 工件背面小孔形状尺寸以及焊缝横断面的数值模拟结果与实验测试结果基本吻合.
关键词 熔池小孔流体流动传热 等离子弧焊    
Abstract:Because of its high gas velocity and heat input, plasma arc welding (PAW) can penetrate thicker workpieces with a single pass because PAW can operate in the keyhole mode. Compared with electron beam and laser beam welding, keyhole PAW is more cost effective and more tolerant of joint preparation, so that it is widely used in manufacturing structures with medium thickness. However, the keyhole establishment and sustainment during the initial stage of PAW process, i.e., the keyholing process, has a critical effect on the process stability and the weld quality. Thus, modelling and simulating of the keyholing process and its influence on fluid flow and heat transfer in keyhole PAW process is of great significance to completely understand the process mechanism. With considering the interaction between weld pool and keyhole, a three dimensional transient model of fluid flow and heat transfer in weld pool is developed for numerical analysis of keyholing process in PAW. The volume of fluid method (VOF) is used to track the keyhole shape and size. The latent heat and momentum sink due to solidifying and melting are dealt with by enthalpy-porosity technique. Considering the larger ratio of PAW weld depth to width, a combined volumetric heat source model is established, and one of its distribution parameters is adjusted dynamically with the variation of keyhole depth. The evolution of fluid flow and thermal field in weld pool, and the keyholing process are quantitatively analyzed on the stainless steel plates of thickness 8 mm. The feature of fluid flow in weld pool is revealed. The predicted keyhole size at bottom side of workpiece and fusion line at transverse cross-section of welds agree with the experimentally measured results.
Key wordsweld pool    keyhole    fluid flow    heat transfer    plasma arc welding
收稿日期: 2012-03-19     
基金资助:

国家自然科学基金重点项目50936003和高等学校博士学科点专项科研基金项目20090131110023资助

作者简介: 张涛, 男, 1983年生, 博士生
[1] Lucas W. In: Hirata Y, Tanaka M eds., Proc 8th Int Symp on Innovations in Welding and Joining for a New Era in Manufacturing, Kyoto: Japan Welding Society, 2008: 189

[2] Irving B. Weld J, 1997; 76(1): 31

[3] Kaplan A. J Phys, 1994; 27D: 1805

[4] Colla T J, Vicanek M, Simon G. J Phys, 1994; 27D: 2035

[5] Sudnik W, Radaj D, Breitschwerd S, Erofeew W. J Phys, 2000; 33D: 662

[6] Cho J H, Na S J. J Phys, 2006; 39D: 5372

[7] Kazemi K, Goldak J A. Comput Mater Sci, 2009; 44: 841

[8] Wang R P, Lei Y P, Shi Y W. Opt Laser Technol, 2011; 43: 870

[9] Xu G X. PhD Thesis, Shandong University, Jinan, 2009

(胥国祥. 山东大学博士学位论文, 济南, 2009)

[10] Dong H G, Gao H M, Wu L. Trans China Weld Inst, 2002; 23(4): 24

(董红刚, 高洪明, 吴林. 焊接学报, 2002; 23(4): 24)

[11] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311

(武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)

[12] Wu C S, Hu Q X, Gao J Q. Comput Mater Sci, 2009; 46: 167

[13] Li L, Hu S S, Yin F L, Ma L. J Tianjin Univ, 2007; 40: 1260

(李力, 胡绳荪, 殷凤良, 马立. 天津大学学报, 2007; 40: 1260)

[14] Yin F L. PhD Thesis, Tianjin University, 2007

(殷凤良. 天津大学博士学位论文, 2007)

[15] Lei Y C, Zheng H J, Cheng X N. Trans China Weld Inst, 2003; 24(1): 44

(雷玉成, 郑惠锦, 程晓农. 焊接学报, 2003; 24(1): 44)

[16] Hsu Y F, Rubinsky B. Int J Heat Mass Transfer, 1988; 31: 1409

[17] Nehad A K. Int Commun Heat Mass Transfer, 1995; 22: 779

[18] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283

[19] Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010; 46: 984

(王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)

[20] Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902

[21] Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011; 47: 706

(霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 706)

[22] Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709

[23] Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011; 47: 1061

(孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061)

[24] Wu C S. Welding Thermal Processes and Weld Pool Behaviors. Beijing: China Machine Press, 2008: 123

(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 123)

[25] TaoWQ. Numerical Heat Transfer. 2nd Ed., Xi’an: Xi’an Jiaotong University Press, 2001: 218

(陶文铨. 数值传热学. 第2版, 西安: 西安交通大学出版社, 2001: 218)
[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[3] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[4] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[5] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[6] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[7] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[8] 菅晓霞,武传松. e蒸气对等离子弧焊接熔池行为的影响*[J]. 金属学报, 2016, 52(11): 1467-1476.
[9] 胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
[10] 王理林, 林鑫, 王永辉, 宇红雷, 黄卫东. 激光重熔熔池凝固组织的实时观察研究[J]. 金属学报, 2015, 51(4): 492-498.
[11] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极TIG电弧-熔池传热与流动数值模拟*[J]. 金属学报, 2015, 51(2): 178-190.
[12] 吴宣楠,冯妍卉,李岩,李亚飞,张欣欣,武传松. 穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析*[J]. 金属学报, 2015, 51(11): 1365-1376.
[13] 张刚, 石玗, 李春凯, 黄健康, 樊丁. 熔池三维自由表面状态与TIG焊熔透的相关性研究*[J]. 金属学报, 2014, 50(8): 995-1002.
[14] 李岩,冯妍卉,张欣欣, 武传松. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804-810.
[15] 裴莹蕾,吴爱萍,单际国,任家烈. 基于熔池流动分析的高速激光焊驼峰焊道形成过程研究[J]. 金属学报, 2013, 49(6): 725-730.