Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 547-554    DOI: 10.3724/SP.J.1037.2012.00056
  论文 本期目录 | 过刊浏览 |
电弧离子镀沉积磁性薄膜的研究
常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超
中国科学院金属研究所, 沈阳 110016
STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING
CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(7062 KB)  
摘要: 研究了电弧离子镀磁性靶材使用过程中发生“跑弧”并导致靶材无法稳定刻蚀的问题. 利用有限元方法(FEM)对外加磁场下非磁性靶材系统和磁性靶材系统中的磁场分布进行了模拟. 研究了外磁场对电弧斑点运动的影响机理, 并结合电弧斑点放电的物理机制, 探讨了磁性靶材与低饱和蒸气压金属靶壳、绝缘陶瓷靶壳或软磁性金属靶壳组成复合结构靶材解决磁性靶材使用问题的可行性. 结果表明, 这3种复合结构靶材设计方案均能有效解决电弧离子镀磁性靶材“跑弧”问题. 通过实验得到, 在低饱和蒸气压金属或绝缘陶瓷靶壳设计方案里, 靶材频繁引弧到弧斑能受控运动的转变温度为(136.6±23.0) ℃.
关键词 电弧离子镀磁性材料有限元方法磁场分布复合结构靶材    
Abstract:Arc ion plating (AIP) has been widely used for depositing various kinds of coatings due to the excellent characteristics of high deposition rate, convenient parameter control, high degree of ionization in the target material, good coating--substrate adhesion, flexibility of target arrangements and merits of producing coatings with high packing density. Magnetic films, with a few micrometers or less, could be utilized in the electronics industry, such as magnetic recording, magnetic microelectromechanical systems, magneto optical modulator, and so on. In AIP process, due to magnetic shielding and self--induced magnetic field, arc spot on the surface of the magnetic target moved outside all the time, and the erosion of the magnetic target could not be stable. In this study, arc spot outside moving and unstable erosion of the magnetic target in arc ion plating have been investigated. The distribution of the magnetic field of the nonmagnetic target and the magnetic target under an additional magnetic field was simulated by the finite element method (FEM). The effect of magnetic field on the arc spot movement was researched. With the physical mechanism of the arc spot discharge, the feasibility on the solution of the application problem of the magnetic target has been discussed by the program of the composited structure target, which were composed of magnetic target materials and target shell of low saturation vapor pressure metal, target shell of insulating ceramics, or target shell of soft magnetic metal. The results showed that all these solutions could solve the problem of arc spot outside moving efficiently. In the study, the transition temperature is (136.6±23.0) ℃ in the solutions of the target shell of low saturation vapor pressure metal or insulating ceramics, during which the arc striking frequently transformed to the controlled movement of arc spot.
Key wordsarc ion plating    magnetic material    finite element method    magnetic field distribution    composited sructure target
收稿日期: 2012-02-13     
基金资助:

国家自然科学基金资助项目51171197

通讯作者: 孙超     E-mail: csun@imr.ac.cn
Corresponding author: csun@imr.ac.cn      E-mail: csun@imr.ac.cn
作者简介: 常正凯, 男, 1984年生, 博士生

引用本文:

常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 电弧离子镀沉积磁性薄膜的研究[J]. 金属学报, 2012, 48(5): 547-554.
CHANG Zheng-Kai, XIAO Jin-Quan, CHEN Yo-Qiu, LIU Shan-Chuan, GONG Jun, XUN Tiao. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING. Acta Metall Sin, 2012, 48(5): 547-554.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00056      或      https://www.ams.org.cn/CN/Y2012/V48/I5/547

[1] Ueda K, Tabata H, Kawai T.  Appl Phys Lett, 2001; 79: 988

[2] Ramesh R, Spaldin N A.  Nat Mater, 2007; 6: 21

[3] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A. Nat Mater, 2003; 2: 673

[4] Bakonyi I, Burgstaller A, Socher W, Voitlander J,Toth-Kadar E, Lovas A, Ebert H, Wachtel E, Willmann N, Liebermann H H. Phys Rev, 1993; 47B: 14961

[5] Kashiwagi M, Ido S.  Vacuum, 1999; 53: 33

[6] Huang J C A, Hu Y M, Yu C C.  J Appl Phys, 1998; 83: 7046

[7] Di G Q.  Chin Pat, CN101570851A, 2009

    (狄国庆. 中国专利, CN101570851A, 2009)

[8] Chen J S, Lau S P, Zhang Y B, Sun Z, Tay B K, Sun C Q.  Thin Solid Films, 2003; 443: 115

[9] Wang Q M, Kim K H.  Acta Mater, 2009; 57: 4974

[10] Sun L, Li H K, Lin G Q, Dong C.  J Vac Sci Technol, 2010; 28A: 1299

[11] Chang Z K, Wan X S, Pei Z L, Gong J, Sun C.  Surf Coat Technol, 2011; 205: 4690

[12] Wang T G, Jeong D, Liu Y, Wang Q, Iyengar S, Melin S, Kim K H.  Surf Coat Technol, 2012; 206: 2638

[13] Lieberman M A, Lichtenberg A J, translated by Pu Y K, Zhu X M, Guo Z G, Wang J L, Mao Z G, Feng Y, Wang X,Song X B, Ma J, Zhang G L, Ma J X, Chen Y.  Priciples of Plasma Discharges and Materials Processing. 2nd Ed.,Beijing: Science Press, 2007: 9

(Lieberman M A, Lichtenberg A J著, 蒲以康, 朱悉铭, 郭志刚, 王久丽, 毛志国, 冯阳, 王旭, 宋旭波,马杰, 张谷令, 马锦秀, 陈宇译. 等离子体放电原理与材料处理. 第二版. 北京: 科学出版社, 2007: 9)

[14] Lang W C, Xiao J Q, Gong J, Sun C, Huang R F, Wen L S.  Acta Metall Sin, 2010; 46: 372

     (郎文昌, 肖金泉, 宫骏, 孙超, 黄荣芳, 闻立时. 金属学报, 2010; 46: 372)

[15] Daalder J E.  J Phys, 1983; 16D: L177

[16] Drouet M G.  IEEE Trans Plasma Sci, 1985; 13: 235

[17] Beilis I I.  IEEE Trans Plasma Sci, 2002; 30: 2124

[18] Hantzsche E.  IEEE Trans Plasma Sci, 2003; 31: 799

[19] Lang W C, Xiao J Q, Gong J, Sun C, Huang R F, Wen L S.  Vacuum, 2010; 84: 1111

[20] Feng D, Qiu D R.  Metal Physics. vol.4,Beijing: Science Press, 1998: 441

     (冯端, 丘第荣著. 金属物理学. 第4卷, 北京: 科学出版社, 1998: 441)

[21] Dai D S, Qian K M.  Ferromagnetics. vol.1, Beijing: Science Press, 1987: 120

     (戴道生, 钱昆明著, 铁磁学(上册). 第1卷, 北京: 科学出版社, 1987: 120)

[22] Lang Y J, Che Y C.  Thermodynamics Databook of Inorganic Matter.Shenyang: Northeast University Press, 1993: 513

     (梁英教, 车荫昌编. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 513)
[1] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[2] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[3] 吴多利, 姜肃猛, 范其香, 宫骏, 孙超. 镍基高温合金Al-Cr涂层的恒温氧化行为[J]. 金属学报, 2014, 50(10): 1170-1178.
[4] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[5] 卢旭阳, 于大千, 姜肃猛, 刘山川,宫骏, 孙超. (NiCoCrAlYSiB+AlSiY)复合涂层热腐蚀行为的研究[J]. 金属学报, 2012, 48(4): 461-468.
[6] 时婧 裴志亮 宫骏 孙超 MUDERS C M 姜辛. Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J]. 金属学报, 2012, 48(11): 1349-1356.
[7] 王维新 姜肃猛 卫广智 马军 宫骏 孙超. NiCoCrAlYSiB+AlSiY梯度涂层恒温氧化行为[J]. 金属学报, 2011, 47(5): 578-586.
[8] 肖金泉 郎文昌 赵彦辉 宫骏 孙超 闻立时. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响[J]. 金属学报, 2011, 47(5): 566-572.
[9] 董瑜亮 闫旭波 赵升升 宫骏 孙超. (Ti, Al)N/Ti2AlN涂层的制备[J]. 金属学报, 2010, 46(6): 743-747.
[10] 万先松 师玉英 马军 李海庆 宫骏 孙超. 电弧离子镀CrN涂层盐雾腐蚀行为[J]. 金属学报, 2010, 46(5): 600-606.
[11] 郎文昌 肖金泉 宫骏 孙超 黄荣芳 闻立时. 轴对称磁场对电弧离子镀弧斑运动的影响[J]. 金属学报, 2010, 46(3): 372-379.
[12] 吴博 李红凯 林国强 付宇 候明 衣宝廉. 不锈钢双极板电弧离子镀Cr1-xNx薄膜改性研究[J]. 金属学报, 2009, 45(9): 1125-1129.
[13] 徐朝政 姜肃猛 马军 宫骏 孙超. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为[J]. 金属学报, 2009, 45(8): 964-970.
[14] 李红凯 刘琪 林国强 董闯. 脉冲偏压电弧离子镀C--N--Cr薄膜的成分、结构与性能[J]. 金属学报, 2009, 45(5): 610-614.
[15] 韩志强 朱维 柳百成. 挤压铸造凝固过程热--力耦合模拟 I.数学模型及求解方法[J]. 金属学报, 2009, 45(3): 356-362.