Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1170-1178    DOI: 10.11900/0412.1961.2014.00077
  本期目录 | 过刊浏览 |
镍基高温合金Al-Cr涂层的恒温氧化行为*
吴多利, 姜肃猛(), 范其香, 宫骏, 孙超
中国科学院金属研究所, 沈阳 110016
ISOTHERMAL OXIDATION BEHAVIOR OF Al-Cr COATING ON Ni-BASED SUPERALLOY
WU Duoli, JIANG Sumeng(), FAN Qixiang, GONG Jun, SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

吴多利, 姜肃猛, 范其香, 宫骏, 孙超. 镍基高温合金Al-Cr涂层的恒温氧化行为*[J]. 金属学报, 2014, 50(10): 1170-1178.
Duoli WU, Sumeng JIANG, Qixiang FAN, Jun GONG, Chao SUN. ISOTHERMAL OXIDATION BEHAVIOR OF Al-Cr COATING ON Ni-BASED SUPERALLOY[J]. Acta Metall Sin, 2014, 50(10): 1170-1178.

全文: PDF(4216 KB)   HTML
摘要: 

采用电弧离子镀沉积Cr和粉末包埋法渗Al的联合工艺制备了Al-Cr涂层, 并利用粉末包埋法制备了渗Al涂层, 分析了2种涂层的组织结构和成分, 研究了镍基高温合金DSM11基体、渗Al涂层和Al-Cr涂层在1000和1100 ℃下的恒温氧化行为. 结果表明: 渗Al涂层和Al-Cr涂层组织致密, 与基体结合良好且成分分布均匀. 2种涂层都明显分为2个区域: 外层和互扩散区. 渗Al涂层外层由b-NiAl相和Ni2Al3相组成, Al-Cr涂层外层由b-NiAl相、Ni2Al3相、a-Cr相和AlCr2相组成. Al-Cr涂层可以显著改善基体合金的抗氧化性能, 且明显优于渗Al涂层. Al-Cr涂层优良的抗氧化性能源于在氧化过程中出现了Cr(W)析出带, 能够一定程度阻碍涂层中的Al元素向基体扩散, 降低了涂层退化速度, 而Cr的存在可以促进Al的选择性氧化, 提高涂层的自修复能力.

关键词 电弧离子镀包埋渗AlAl-Cr涂层恒温氧化    
Abstract

Currently, Ni-based superalloys are widely applied to turbine blades or other components of gas turbines for their excellent high temperature mechanical properties. These components must exhibit a high level of resistance to the oxidation and corrosion conditions generated by the combustion environment. The general design philosophy is to select a high strength substrate alloy to withstand the stress and apply a surface coating to give maximum protection from the environment. In this work, a Cr-modified aluminide (Al-Cr) coating were prepared by combining arc ion plating and pack cementation aluminizing. As a contrast, a simple aluminide coating was developed by pack cementation aluminizing. The isothermal oxidation behaviors at 1000 and 1100 ℃ were investigated on the Ni-based superalloy DSM11 substrate, aluminide coating and Al-Cr coating. The results demonstrate that aluminide coating and Al-Cr coating are dense and adhere tightly to the substrate. The microstructures of aluminized coating and Al-Cr coating are divided in two distinguished areas: the outer layer and the interdiffusion zone. The outer layer of the aluminized coating is composed of b-NiAl and Ni2Al3 phases, while the Al-Cr coating consists of b-NiAl, Ni2Al3, a-Cr and AlCr2 phases. The DSM11 substrate shows bad oxidation behavior at 1000 ℃ isothermal oxidation test. The aluminide coating and Al-Cr coating both possess good oxidation properties in this test. Compared with aluminide coating, Al-Cr coating exhibits much better oxidation behavior due to the formation of Cr(W) zones, which can delay the process of Al depletion by hindering the diffusion of Al from the coating to the substrate. As for 1100 ℃ isothermal oxidation test, a large amount of mixed oxides include NiCr2O4 spinel and a-Al2O3 form on the surface of DSM11 substrate. The oxide scale on the surface of aluminide coating is simplex a-Al2O3 at the initial stage, while prolonging the oxidation time it changes into less protective mixed structure composed of NiCr2O4 spinel and a-Al2O3 with massive internal oxidation, leading to great degradation and even failure of the coating. The surface of Al-Cr coating is covered with thick a-Al2O3 during the whole oxidation process. The localized scaling zones produced during oxidation are re-covered by newly formed a-Al2O3. It benefits from the third element effect of Cr, which implies that the Al-Cr coating degenerates primarily by consuming Al-reservoirs. Moreover, the presence of Cr can promote the selective oxidation of Al and the self-repair abilities of the coating.

Key wordsarc ion plating    pack cementation aluminizing    Al-Cr coating    isothermal oxidation
收稿日期: 2014-02-19     
ZTFLH:  TG111.5  
基金资助:* 国家自然科学基金项目51001106和国家重点基础研究发展计划项目2012CB625100资助
图1  渗Al涂层和Al-Cr涂层的XRD谱
图2  渗Al涂层和Al-Cr涂层的截面形貌
Sample Al Ti Cr Co Ni
Aluminized coating 25.6 4.5 5.3 6.8 Bal.
Al-Cr coating 31.9 0.4 13.2 6.4 Bal.
表1  渗Al涂层和Al-Cr涂层的化学成分
图3  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃的恒温氧化动力学曲线
图4  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化20 h后的表面XRD谱
图5  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化20 h后的截面形貌
图6  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化150 h后的表面XRD谱
图7  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化150 h后的截面形貌
图8  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化300 h后的表面XRD谱
图9  DSM11基体、渗Al涂层和Al-Cr涂层在1000 ℃下恒温氧化300 h后的截面形貌
图10  DSM11基体、渗Al涂层和Al-Cr涂层在1100 ℃的恒温氧化动力学曲线
图11  DSM11基体、渗Al涂层和Al-Cr涂层在1100 ℃下恒温氧化20 h后的表面XRD谱
图12  DSM11基体、渗Al涂层和Al-Cr涂层在1100 ℃下恒温氧化20 h后的截面形貌
图13  DSM11 基体、渗Al 涂层和Al-Cr 涂层在1100 ℃下恒温氧化300 h后的表面XRD谱
图14  DSM11基体、渗Al涂层和Al-Cr涂层在1100 ℃下恒温氧化300 h后的表面XRD谱
[1] Nicholls J. MRS Bull, 2003; 28: 659
[2] Li T F. High Temperature Oxidation and Corrosion of Metal. Beijing: Chemical Industry Press, 2003: 270
[2] (李铁藩. 金属的高温氧化和热腐蚀. 北京: 化学工业出版社. 2003: 270)
[3] Goward G W, Boone D H, Giggins C S. ASM Trans, 1967; 60Q: 228
[4] Goward G W. Mater Sci Technol, 1986; 2: 194
[5] Schütze M, Malessa M, Rohr V, Weber T. Surf Coat Technol, 2006; 201: 3872
[6] Zhang Z G, Gesmundo F, Hou P Y, Niu Y. Corros Sci, 2006; 48: 741
[7] Chen J H, Little J A. Surf Coat Technol, 1997; 92: 69
[8] Bianco R, Rapp R A. J Electrochem Soc, 1993; 140: 1181
[9] Swadzba L, Maciejny A, Formanek B, Biedron J. Surf Coat Technol, 1992; 54: 84
[10] Shirvani K, Saremi M, Nishikata A, Tsuru T. Corros Sci, 2003; 45: 1011
[11] Zhan Z L, He Y D, Gao W. Acta Metall Sin (Eng Lett), 2006; 19: 215
[12] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280
[13] Rhysjones T N. Corros Sci, 1989; 29: 623
[14] Nicholls J R. Oxid Met, 2000; 1: 28
[15] Kim J H, Kim M C, Park C G. Surf Coat Technol, 2003; 2-3: 275
[16] Shirvani K, Saremi M, Nishikata A, Tsuru T. Corros Sci, 2003; 45: 1011
[17] Goward G W, Boone D H. Oxid Met, 1971; 3: 475
[18] Gale W F, King J E. Metall Trans, 1992; 23A: 2657
[19] Sun C, Wang Q M, Tang Y J, Guan H R, Gong J, Wen L S. Acta Metall Sin, 2005; 41: 1167
[19] (孙 超, 王启民, 唐亚俊, 管恒荣, 宫 骏, 闻立时. 金属学报, 2005; 41: 1167)
[20] Wang Q M, Zhang K, Gong J, Cui Y Y, Sun C, Wen L S. Acta Mater, 2007; 55: 1427
[21] Rapp R A. Corros Sci, 2002; 44: 209
[22] Lou H Y. J Chin Soc Corros Prot, 1997; 17: 464
[22] (楼翰一. 中国腐蚀与防护学报, 1997; 17: 464)
[23] Li C J, Li W Y. Surf Coat Technol, 2003; 162: 31
[24] Yu D Q. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[24] (于大千. 中国科学院金属研究所硕士学位论文, 沈阳, 2012)
[25] Knotek O, Loffler F, Beele W. Surf Coat Technol, 1993; 61: 6
[26] Hagel W C. Corros Sci, 1965; 21: 316
[27] Strauss D, Müller G, Schumacher G, Engelko V, Stamm W, Clemens D, Quaddakers W J. Surf Coat Technol, 2001; 135: 196
[28] Cheruvu N S, Chan K S, Leverant G R. JSME Int J Ser, 2003; 46A: 635
[1] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[2] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[3] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[4] 张月来,段德莉,赵宇航,侯思焓,李曙. 泡沫NiCrAl电热合金的制备及其电学性能[J]. 金属学报, 2013, 49(2): 214-220.
[5] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[6] 常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 电弧离子镀沉积磁性薄膜的研究[J]. 金属学报, 2012, 48(5): 547-554.
[7] 卢旭阳, 于大千, 姜肃猛, 刘山川,宫骏, 孙超. (NiCoCrAlYSiB+AlSiY)复合涂层热腐蚀行为的研究[J]. 金属学报, 2012, 48(4): 461-468.
[8] 时婧 裴志亮 宫骏 孙超 MUDERS C M 姜辛. Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J]. 金属学报, 2012, 48(11): 1349-1356.
[9] 王维新 姜肃猛 卫广智 马军 宫骏 孙超. NiCoCrAlYSiB+AlSiY梯度涂层恒温氧化行为[J]. 金属学报, 2011, 47(5): 578-586.
[10] 肖金泉 郎文昌 赵彦辉 宫骏 孙超 闻立时. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响[J]. 金属学报, 2011, 47(5): 566-572.
[11] 李文川 蔡俊 凌国平. Al-Cr涂层低温扩散制备及其相组成的研究[J]. 金属学报, 2011, 47(2): 231-235.
[12] 董瑜亮 闫旭波 赵升升 宫骏 孙超. (Ti, Al)N/Ti2AlN涂层的制备[J]. 金属学报, 2010, 46(6): 743-747.
[13] 万先松 师玉英 马军 李海庆 宫骏 孙超. 电弧离子镀CrN涂层盐雾腐蚀行为[J]. 金属学报, 2010, 46(5): 600-606.
[14] 郎文昌 肖金泉 宫骏 孙超 黄荣芳 闻立时. 轴对称磁场对电弧离子镀弧斑运动的影响[J]. 金属学报, 2010, 46(3): 372-379.
[15] 吴博 李红凯 林国强 付宇 候明 衣宝廉. 不锈钢双极板电弧离子镀Cr1-xNx薄膜改性研究[J]. 金属学报, 2009, 45(9): 1125-1129.