Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 372-379    DOI: 10.3724/SP.J.1037.2009.00556
  论文 本期目录 | 过刊浏览 |
轴对称磁场对电弧离子镀弧斑运动的影响
郎文昌1); 肖金泉1;2); 宫骏1); 孙超1); 黄荣芳2); 闻立时1)
1)  中国科学院金属研究所材料表面工程研究部; 沈阳 110016
2)  湖南远科航表面工程有限公司; 长沙 410013
INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON CATHODE SPOTS MOVEMENT IN ARC ION PLATING
LANG Wenchang1); XIAO Jinquan1;2); GONG Jun1); SUN Chao1); HUNG Rongfang2); WEN Lishi1)
1)  Division of Surface Engineering of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016\par
2)  Hunan YKH Surface Engineering Co.; Ltd; Changsha 410013
引用本文:

郎文昌 肖金泉 宫骏 孙超 黄荣芳 闻立时. 轴对称磁场对电弧离子镀弧斑运动的影响[J]. 金属学报, 2010, 46(3): 372-379.
. INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON CATHODE SPOTS MOVEMENT IN ARC ION PLATING[J]. Acta Metall Sin, 2010, 46(3): 372-379.

全文: PDF(1212 KB)  
摘要: 

研究了轴对称磁场对电弧离子镀弧斑运动的影响规律, 利用有限元分析软件FEMM对轴对称磁场的分布进行了模拟, 采用SHT-V型磁场测试仪测试了磁场强度, 分析了靶面不同磁场分量的分布规律. 从电弧斑点放电的物理机制出发, 探讨了不同磁场分量和轴对称磁场对电弧离子镀弧斑运动的影响机制. 结果表明, 轴对称磁场通过影响空间正电荷密度n+的分布而作用于弧斑运动; 随着轴对称磁场横向分量的增加, 电弧斑点由随机运动逐渐转变为向靶面边缘扩展的旋转运动, 弧斑运动速度加快, 电弧电压升高, 电流下降; 当横向分量增加到临界强度(BT≈30 Gs)时,弧斑在靶材边缘稳定的快速旋转运动并在靶沿处上下抖动, 弧斑分裂, 靶面中心处每隔0.5 s左右出现多个细的圆斑线, 然后很快向外扩展消失; 靶材边缘出现明显的刻蚀轨道.

关键词 电弧离子镀轴对称磁场有限元分析弧斑运动    
Abstract

Arc ion plating (AIP) has been widely utilized in the deposition of various kinds of thin solid films due to the excellent characteristics of the arc plasma produced from an active cathode spot that emits ions of cathode material, as well as electrons. In AIP process, the cathode spot is usually steered by an external magnetic field. Cathode spot motion is the key factor because it affects the physical characteristics of the vacuum arc plasma, the utilization of the cathode material, the emission of macroparticles (MPs) and the quality of subsequent films containing these MPs. Therefore, cathode spot dynamics should be understood practically under a compound external magnetic field, such as in axisymmetric magnetic field (AMF), for industrial applications. An AMF produced by using an adjustable electromagnetic coil associated with a concentric magnetic flux guider was applied to the cathode surface to investigate the influence of the AMF on the arc cathode spot motion. The distribution of the magnetic field was simulated by the finite element method (FEM) software. The magnetic field intensity was measured by an SHT-V magnetometer and the distributions of magnetic field with different intensities were analyzed. Based on the results of FEM simulation and the physical mechanism of the arc cathode spot discharge, the effects of magnetic-field components and AMF on the cathode spot movement were discussed. The results showed that increasing the AMF intensity can strongly influence cathode spot movement. In the case of a weak AMF,  the cathode spot moves randomly on the cathode surface. With increasing AMF, there is an increasing tendency for the cathode spot to rotate and drift toward the cathode target edge. The increase in the transverse magnetic field (TMF) intensity, BT, can accelerate the rotational velocity of the cathode spot, increase the arc voltage and decrease the arc current. With a relatively strong AMF (BT≈30 Gs), the cathode spot rotates near the edge of the cathode surface and is confined to a circular trajectory. A new arc cathode spot is ignited, splits, and is extinguished repeatedly on the cathode surface, which can be observed at intervals of about 0.5 s, while there is an obvious erosion track left at the bottom of the cathode edge.

Key wordsarc ion plating    axisymmetric magnetic field    finite element analysis    cathode spot movement
收稿日期: 2009-08-25     
基金资助:

国家高技术研究发展计划资助项目2006AA03Z521

作者简介: 郎文昌, 男, 1982年生, 博士生

[1] Kimblin C W. J Appl Phys, 1974; 45: 5235
[2] Sanders D M, Boercker D B, Falabella S. IEEE Trans Plasma Sci, 1990; 18: 883
[3] Vyskocil J, Musil J. Surf Coat Technol, 1990; 43: 299
[4] Boxman R L, Goldsmith S, Greenwood A. IEEE Trans Plasma Sci, 1997; 25: 1174
[5] Brown I G. Annu Rev Mater Sci, 1998; 28: 243
[6] Boxman R L. IEEE Trans Plasma Sci, 2001; 29: 762
[7] Boxman R L, Zhitomirsky V N. Rev Sci Instrum, 2006; 77: 6748
[8] Boxman R L, Martin P J, Sanders D M. Handbook of Vacuum Arc Science and Technology, Chap 1, New Jersey: Noyes Publications, 1995: 3
[9] Anders A. Cathodic Arcs: From Fractal Spots to Energetic Condensation, Chap 3, Berkeley: Springer, 2008: 75
[10] Juttner B. J Phys, 2001; 34D: 103
[11] Siemroth P, Zimmer O, Schulke T, Vetter J. Surf Coat Technol, 1997; 94: 592
[12] Takikawa H, Tanoue H. IEEE Trans Plasma Sci, 2007; 35: 992
[13] Anders S, Anders A, Yu K M, Brown I G. IEEE Trans Plasma Sci, 1993; 21: 440
[14] Tanberg R. Nature, 1929; 124: 371
[15] Juttner B. J Phys, 1995; 28D: 516
[16] Beilis I I. IEEE Trans Plasma Sci, 2001; 29: 657
[17] Drouet M G. IEEE Trans Plasma Sci, 1985; 13: 235
[18] Juttner B, Kleberg I. J Phys, 2000; 33D: 2025
[19] Harris L P. IEEE Trans Plasma Sci, 1983; 11: 94
[20] Beilis I I. IEEE Trans Plasma Sci, 2002; 30: 2124
[21] Hantzsche E. IEEE Trans Plasma Sci, 2003; 31: 799
[22] Anders A. Thin Solid Films, 2006; 502: 22
[23] Anders A. Vacuum, 2002; 67: 673
[24] Siemroth P, Schultrich B, Sch¨ulke T. Surf Coat Technol, 1995; 74: 92
[25] Anders A. IEEE Trans Plasma Sci, 2005; 33: 1456
[26] Ramalingam S, Qi C B, Kim K. US Pat 4673477, 1987
[27] Boxman R L, Beilis I I. IEEE Trans Plasma Sci, 2005; 33: 1618
[28] Meeker D. http://femm.foster–miller.net
[29] Yushkov G Y, Anders A, Oks E M, Brown I G. J Appl Phys, 2000; 88: 5618
[30] L¨u Q G, Ren Z X, Liang R Q. Vac Cryog, 1999; 5: 202
[31] Daalder D E. J Phys, 1986; 16D: 17
[32] Lafferty J M. Vacuum Arcs—Theory and Applications. New York: John Wiley & Sons Inc, 1980: 249
[33] Anders A, Anders S, J¨uttner B, B¨otticher W, L¨uck H, Schr¨oder G. IEEE Trans Plasma Sci, 1992; 20: 466
[34] Shmelev D L, Litvnov E A. IEEE Trans Dielect Electr Insulation, 1999; 6: 441
[35] Fang D Y. J Phys, 1982; 15D: 833
[36] John R M, Winans J G. Phys Rev, 1954; 94: 1097
[37] Robson A E. Proc 4th Int Conf on Phenomena in Ionized Gas. Uppsala, 1959; 1: 340
[38] Coll B F, Sanders D M. Surf Coat Technol, 1996; 81: 42

[1] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[2] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[3] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[4] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[5] 吴多利, 姜肃猛, 范其香, 宫骏, 孙超. 镍基高温合金Al-Cr涂层的恒温氧化行为*[J]. 金属学报, 2014, 50(10): 1170-1178.
[6] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[7] 常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 电弧离子镀沉积磁性薄膜的研究[J]. 金属学报, 2012, 48(5): 547-554.
[8] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.
[9] 卢旭阳, 于大千, 姜肃猛, 刘山川,宫骏, 孙超. (NiCoCrAlYSiB+AlSiY)复合涂层热腐蚀行为的研究[J]. 金属学报, 2012, 48(4): 461-468.
[10] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[11] 方臣富 陈志伟 胥国祥 胡庆贤 周航宇 时振. 缆式焊丝CO2气体保护焊工艺研究[J]. 金属学报, 2012, 48(11): 1299-1305.
[12] 时婧 裴志亮 宫骏 孙超 MUDERS C M 姜辛. Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J]. 金属学报, 2012, 48(11): 1349-1356.
[13] 王维新 姜肃猛 卫广智 马军 宫骏 孙超. NiCoCrAlYSiB+AlSiY梯度涂层恒温氧化行为[J]. 金属学报, 2011, 47(5): 578-586.
[14] 肖金泉 郎文昌 赵彦辉 宫骏 孙超 闻立时. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响[J]. 金属学报, 2011, 47(5): 566-572.
[15] 张姝 田素贵 于慧臣 苏勇 于兴福 于莉丽. [011]取向镍基单晶合金在拉伸蠕变期间的组织演化与有限元分析[J]. 金属学报, 2011, 47(1): 61-68.