Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1349-1356    DOI: 10.3724/SP.J.1037.2012.00328
  论文 本期目录 | 过刊浏览 |
Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响
时婧1), 裴志亮1), 宫骏1), 孙超1), MUDERS C M2), 姜辛2)

1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
2) Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076, Germany

EFFECT OF Si CONTENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-Al-Si-N FILMS DEPOSITED BY CATHODIC VACUUM 
ARC ION PLATING
SHI Jing1), PEI Zhiliang1),GONG Jun1), SUN Chao1), MUDERS C M2), JIANG Xin2)
1) State Key Laboratory for Corrosion and Protection, Insititute of Metal Research, Chinese Academy of Sciences, Shenyang
2) Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076, Germany
引用本文:

时婧 裴志亮 宫骏 孙超 MUDERS C M 姜辛. Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J]. 金属学报, 2012, 48(11): 1349-1356.
. EFFECT OF Si CONTENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-Al-Si-N FILMS DEPOSITED BY CATHODIC VACUUM 
ARC ION PLATING[J]. Acta Metall Sin, 2012, 48(11): 1349-1356.

全文: PDF(923 KB)  
摘要: 

利用磁过滤电弧离子镀技术在高速钢基体上制备了不同Si含量的Ti-Al-Si-N薄膜, 研究了Si含量对薄膜组织结构以及力学性能的影响. 结果表明, Ti-Al-Si-N薄膜主要由晶态TiAlN和非晶态的Si3N4组成, 随着Si含量的增加, XRD衍射峰强度减弱, 晶粒尺寸减小; 薄膜的显微组织也由明显的柱状晶转变为致密的纳米晶结构. 利用纳米硬度仪对薄膜的硬度和弹性模量进行了分析, 结果表明, 薄膜的硬度和弹性模量有着相似的变化趋势,随着Si含量的增加, 两者都先增加, 当Si含量达到一定程度时, 它们会逐渐稳定在一定范围内, 而后又随Si含量的继续增加呈下降趋势. 通过划痕测试对薄膜结合强度进行了分析, 结果表明, 薄膜与基体的结合强度随Si含量的增加先减小而后增加.

关键词 磁过滤电弧离子镀Ti-Al-Si-N薄膜纳米硬度结合强度    
Abstract

Nanocomposite films deposited by physical vapor deposition (PVD) methods have been attracting much attention worldwide in the last decade. Among these, Ti-Al-N is one of the most thoroughly studied hard film materials. Compared with such films as Ti-N, Ti-C-N and Ti-Zr-N, Ti-Al-N films are commercially available for various machining applications, due to their high hardness, relatively low friction coefficient, good oxidation and corrosion resistance. However, under certain conditions the loose of hardness and oxidation, the high internal stress are still serious drawbacks and restrict their industrial applications. Therefore, seeking for a new kind of film on basis of Ti-Al-N films becomes necessary, it is significant to study the< microstructure and properties of the films aim at specific application. In the present work, Ti-Al-Si-N films with various silicon contents were deposited on high speed steel substrates with the assistance of cathodic vacuum arc ion plating (AIP). The film structure, chemical and phase composition, mechanical and tribological properties are characterized by XPS, XRD, SEM, TEM, nano-indentation and Rockwell indenter. Combined with XRD and XPS analysis, the results indicated that the films were composed of crystalline TiAlN and amorphous Si3N4. With increasing silicon content in the film, a deterioration of the preferred orientation and a reduction of the grain size were detected. SEM observation of the film cross-sections showed that the microstructure changed from obvious columnar to dense nano-structure. Furthermore, with increasing silicon content, both the hardness and elastic modulus firstly increased a lot, within a certain ranges of silicon content changed to be steady, and then sharply decreased with more silicon addition in the film. The H3/E2 ratio can be obtained on basis of measurements of hardness $H$ and Young's modulus E, it is proportional to the film resistance to plastic deformation. The results showed that the harder the film is, the higher the resistance to plastic deformation is in films. The adhesive strength between substrate and films was also studied by scratch tests, the values decreased firstly, and then increased again with increasing silicon content. The essence of above phenomena is attributed to the variations of microstructure and morphologies in the films induced by increasing silicon content. This whole study implies that these Si-doped Ti-Al-N films deserve some cautiousness before its application for\linebreak wear resistance.

Key wordscathodic vacuum arc ion plating    Ti-Al-Si-N film    nano-indentation    adhesive strength
收稿日期: 2012-06-04     
作者简介: 时婧, 女, 1987年生, 博士生

[1] Tam P L, Zhou Z F, Shum PW, Li K Y. Thin Solid Films, 2008; 516: 5725

[2] Shi J, Kumar A, Zhang L, Jiang X, Pei Z L, Gong J, Sun C. Surf Coat Technol, 2012; 206: 2947

[3] Franz R, Neidhardt J, Kaindl R, Sartory B, Tessadri R, Lechthaler M, Polcik P, Mitterer C. Surf Coat Technol, 2009; 203: 1101

[4] Pfeiler M, Kutschej K, Penoy M, Michotte C, Mitterer C, Kathrein M. Int J Refract Met Hard Mater, 2009; 27: 502

[5] Vaz F, Rebouta L, Goudeau P, Girardeau T, Pacaud J, Rivi´ere J P, Traverse A. Surf Coat Technol, 2001; 146: 274

[6] Xie Z W, Wang L P, Wang X F, Huang L, Lu Y, Yan J C. Trans Nonferrous Met Soc China, 2011; 21: 476

[7] Santana A E, Karimi A, Derflinger V H, Sch¨utze A. Surf Coat Technol, 2004; 177–178: 334

[8] Zhu Y C, Fujita K, Iwamoto N, Nagasaka H, Kataoka T. Surf Coat Technol, 2002; 158–159: 664

[9] Moser M, Mayrhofer P H. Scr Mater, 2007; 57: 357

[10] MoserM,Mayrhofer P H, Clemens H. Intermetallics, 2008; 16: 1206

[11] Moser M, Mayrhofer P H, Sz´ekely L, S´afr´an G, Barna P B. Surf Coat Technol, 2008; 203: 148

[12] Kutschej K, Fateh N, Mayrhofer P H, Kathrein M, Polcik P, Mitterer C. Surf Coat Technol, 2005; 200: 113

[13] Durand–Drouhin O, Santana A E, Karimi A, Derflinger V H, Sch¨utze A. Surf Coat Technol, 2003; 163: 260

[14] Vepˇrek S, M¨annling H D, Karvankova P, Prochazka J. Surf Coat Technol, 2006; 200: 3876

[15] Carvalho S, Vaz F, Rebouta L, Schneider D, Cavaleiro A, Alves E. Surf Coat Technol, 2001; 142–144: 110

[16] Kim S K, Vinh P V, Kim J H, Ngoc T. Surf Coat Technol, 2005; 200: 1391

[17] Park I W, Choi S R, Suh J H, Park C G, Kim K H. Thin Solid Films, 2004; 447–448: 443

[18] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564

[19] Diserens M, Patscheider J, L´evy F. Surf Coat Technol, 1998; 108–109: 241

[20] Carvalho S, Ribeiro E, Rebouta L, Vaz F, Alves E, Schneider D, Cavaleiro A. Surf Coat Technol, 2003; 174–175: 984

[21] Fuentes G G, Almandoz E, Pierrugues R, Mart´?nez R, Rodr´?guez R J, Caro J, Vilaseca M. Surf Coat Technol, 2010; 205: 1368

[22] Chang C L, Lee J W, Tseng M D. Thin Solid Films, 2009; 517: 5231

[23] Briggs D, Seah M P. Practical Surface Analysis: Auger and X–Ray Photoelectron Spectroscopy. 2nd Ed., Chichester: John Wiley & Sons Ltd, 1990: 201

[24] Wagner C D, RiggsWM, Davis L E, Moulder J F, Mullenberg G E. Handbook of X–Ray Photoelectron Spectroscopy. Eden Prairie: Perkin–Elmer Corporation, 1979: 34

[25] Kim G S, Kim B S, Lee S Y, Hahn J H. Thin Solid Films, 2006; 506–507: 128

[26] Petch N J, Hall E O. J Iron Steel Inst, 1953; 174: 25

[27] Tsui T Y, Pharr G M, Oliver W C, Bhatia C S, White R L, Andres S, Anders A, Brown I G. In: Bogy D B, Donley M S, Drory M D, Field J E eds., Mater Res Soc Symp Proc 383, Cambridge: Cambridge University Press, 1995: 447

[28] Musil J. Surf Coat Technol, 2000; 125: 322

[1] 秦勤, 李程, 何流, 叶陈龙, 臧勇. 基于非对称双悬臂梁模型优化的双金属板界面结合强度研究[J]. 金属学报, 2020, 56(12): 1617-1628.
[2] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[3] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[4] 李继展,付莹,接金川,赵佳蕾,Joonpyo Park,Jongho Kim,李廷举. 连续铸造法制备3003/4004铝合金复层圆铸坯[J]. 金属学报, 2013, 49(3): 297-302.
[5] 李伟洲 王启民 宫骏 孙超 姜辛. 一步法制备含扩散阻挡层的多层体系及其界面结合强度[J]. 金属学报, 2010, 46(5): 561-568.
[6] 徐娜 张甲 侯万良 全明秀 李荣德 常新春. 热处理对高温固体自润滑涂层组织结构及结合强度的影响[J]. 金属学报, 2009, 45(8): 943-948.
[7] 谢季佳 洪友士. 纳米晶Ni疲劳行为的实验研究[J]. 金属学报, 2009, 45(7): 844-848.
[8] 姚勇; 李伟洲; 王启民; 宫骏; 孙超; 李家宝 . Cr-O-N 扩散阻挡层对 NiCrAlY 涂层结合性能的影响[J]. 金属学报, 2008, 44(7): 876-882 .
[9] 吴开明; 张莉芹; 贺信莱; 尚成嘉; 杨善武; 王学敏 . 低碳微合金钢中针状铁素体的微观力学性能及其组织稳定性[J]. 金属学报, 2006, 42(1): 19-22 .
[10] 华文深; 吴杏芳; 陆华; 沈电洪 . TiCx/Ni3Al复合材料相界面显微结构及界面纳米硬度与弹性模量分布[J]. 金属学报, 2002, 38(10): 1109-1114 .
[11] 谢飞; 何家文 . 高速钢W18Cr4V离子渗氮层组织对TiN膜与基体结合强度的影响[J]. 金属学报, 2000, 36(10): 1099-1103 .
[12] 朱晓东; 黄鹤; 胡奈赛; 何家文 . 用球滚接触疲劳法评定硬质薄膜的结合强度[J]. 金属学报, 1999, 35(5): 523-526 .
[13] 张鹏;崔建忠;杜云慧;巴立民. 钢-铝固液相复合中浸镀助焊剂的应用研究[J]. 金属学报, 1997, 33(8): 869-873.
[14] 阎鹏勋;杨思泽;陈熙琛. 脉冲高能量密度等离子体沉积氮化钛膜的结合强度[J]. 金属学报, 1994, 30(23): 503-507.
[15] 刘长清;李美栓;金柱京;吴维(山文). 精细TiN陶瓷薄膜的抗拉强度和界面结合强度[J]. 金属学报, 1992, 28(9): 91-94.