Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1174-1180    DOI: 10.3724/SP.J.1037.2011.00036
  论文 本期目录 | 过刊浏览 |
Mg-Zn-Y-Zr合金在NaCl溶液中的腐蚀行为
张亚丛, 王锦程, 吕文泉
西北工业大学凝固技术国家重点实验室, 西安 710072
CORROSION BEHAVIOR OF Mg-Zn-Y-Zr ALLOYS IN NaCl SOLUTION
ZHANG Yacong, WANG Jincheng, LU Wenquan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

张亚丛 王锦程 吕文泉. Mg-Zn-Y-Zr合金在NaCl溶液中的腐蚀行为[J]. 金属学报, 2011, 47(9): 1174-1180.
, , . CORROSION BEHAVIOR OF Mg-Zn-Y-Zr ALLOYS IN NaCl SOLUTION[J]. Acta Metall Sin, 2011, 47(9): 1174-1180.

全文: PDF(4793 KB)  
摘要: 研究了Zn含量(质量分数)分别为4.3%, 6%和8.6%的Mg-Zn-Y-Zr合金在5%(质量分数)NaCl溶液中的质量损失腐蚀和电化学腐蚀行为, 并对不同腐蚀时间的合金表面腐蚀形貌、微观组织和相成分进行了分析. 结果表明, Mg-Zn-Y-Zr合金中的第二相和Zn含量可显著影响合金的耐腐蚀性能, Zn含量为4.3%的Mg-Zn-Y-Zr合金表现出良好的抗腐蚀性能. 随着Zn含量的增加, 合金晶界上形成了电偶腐蚀加速效应更强的W相, 同时使α-Mg基体中的Zn含量增加, 从而导致合金的耐蚀性能逐渐变差.
关键词 Mg-Zn-Y-Zr合金NaCl溶液电化学腐蚀    
Abstract:In recent years, Mg-Zn-Y-Zr alloys have attracted significant interest due to the high strength at room and elevated temperature. Current researches mainly focus on the microstructures and mechanical properties of Mg-Zn-Y-Zr alloys, however, the corrosion behaviors of Mg-Zn-Y-Zr alloys have been seldom studied. In the present paper, the mass loss corrosion and electrochemical corrosion behavior of three Mg-Zn-Y-Zr alloys with Zn contents of 4.3% (mass fraction), 6% and 8.6% in 5% (mass fraction) NaCl solution were studied, respectively. The morphology, microstructure and phase composition of these alloys after different immersion time were observed. The results showed that the type of second phase and the content of Zn in these alloys significantly affect their corrosion resistance performance and the Mg-Zn-Y-Zr alloy with 4.3% Zn exhibited better corrosion resistance. With the increase of Zn content, the W phase with stronger effect of galvanic corrosion formed at grain boundaries and the content of Zn in α-Mg matrix also increased, which resulted in the worse corrosion performance. Experimental results also showed that the corrosion process of Mg-4.3Zn-0.7Y-0.6Zr alloy can be divided into three stages: galvanic corrosion, Zr-rich zone-Zr--poor zone corrosion and pitting corrosion.
Key wordsMg-Zn-Y-Zr alloy    NaCl solution    electrochemical corrosion
收稿日期: 2011-01-17     
ZTFLH: 

TG146

 
基金资助:

教育部新世纪优秀人才支持计划NCET-09-0683和凝固技术国家重点实验室自主研究课题24-TZ-2009

作者简介: 张亚丛, 男, 1986年生, 硕士生
[1] Li W X. Non–ferrous Metal Material Engineering Introduction. Beijing: Metallurgical Industry Press, 2007: 39

(黎文献. 有色金属材料工程概论. 北京: 冶金工业出版社, 2007: 39)

[2] Xu D K, Liu L, Xu Y B, Han E H. Acta Mater, 2008; 56: 985

[3] Jia S C. PhD Thesis, Jilin University, 2006

(贾素秋. 吉林大学博士学位论文, 2006)

[4] Bae D H, Kim S H, Kim D H, Kim W T. Acta Mater, 2002; 50: 2343

[5] Singh A, Nakamura A M, Watanabe M, Kato A, Tsai A P. Scr Mater, 2003; 49: 417

[6] Popov I, Starosvetsky D, Shechtman D. J Mater Sci, 2000; 251: 1

[7] Zhang E L, He W W, Du H, Yang K. Mater Sci Eng, 2008; A488: 102

[8] Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials, 2008; 29: 1329

[9] Song Y W, Shan D Y, Chen R S, Han E H. Corros Sci, 2010; 52: 1830

[10] Zhang Y C, Wang J C, Zhang Q, L¨u W Q. Foundry Technol, 2010; 31: 1299

(张亚丛, 王锦程, 张琪, 吕文泉. 铸造技术, 2010; 31: 1299)

[11] Xu Y D, Hu S S, Zhu L P, Cheng F J, Zhu X R. Ordnance Mater Sci Eng, 2009; 32: 42

(徐永东, 胡绳荪, 朱利萍, 程方杰, 朱秀荣. 兵器材料科学与工程, 2009; 32: 42)

[12] Chang J W, Guo X W, Fu P H, Peng L M, Ding W J. Electrochim Acta, 2007; 52: 3160

[13] Si L. Master Dissertation, Xi’an: Northwestern Polytechnical University, 2010

(司林. 西安: 西北工业大学硕士学位论文, 2010)

[14] Song G L, Atrens A, Dargusch M. Corros Sci, 1999; 41: 249

[15] Xia L T, Gao S, Luo X P, Zang D M. Foundry, 2005; 15: 794

(夏兰廷, 高珊, 罗小萍, 臧东勉. 铸造, 2005; 15: 794)

[16] Chen X Y. Master Dissertation, Xi’an: Northwestern Polytechnical University, 2009

(陈先毅. 西安: 西北工业大学硕士学位论文, 2009)

[17] Lunder O, Lein J E, Aune T K, Nisancioglu K. Corrosion, 1989; 45: 74l
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[3] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[4] 王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
[5] 刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*[J]. 金属学报, 2014, 50(2): 212-218.
[6] 丁康康, 肖葵, 邹士文, 董超芳, 赵瑞涛, 李晓刚. PCB-HASL电路板在NaHSO3/Na2SO3溶液中的腐蚀电化学行为[J]. 金属学报, 2014, 50(10): 1269-1278.
[7] 刘福国; 杜敏 . 新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响[J]. 金属学报, 2007, 43(9): 989-993 .
[8] 李劲风; 张昭; 程英亮; 曹发和; 王建明; 张鉴清; 曹楚南 . NaCl溶液中Al-Li合金腐蚀过程的电化学特征[J]. 金属学报, 2002, 38(7): 760-764 .
[9] 雍兴跃; 林玉珍; 刘景军; 刘淑静 . 双相钢在流动中性含砂氯化物中的磨损腐蚀[J]. 金属学报, 2001, 37(7): 745-748 .