Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1181-1187    DOI: 10.3724/SP.J.1037.2011.00253
  论文 本期目录 | 过刊浏览 |
钢质蜂窝夹芯板的弯曲疲劳损伤模型
邹广平, 芦颉, 曹扬, 刘宝君
哈尔滨工程大学航天与建筑工程学院,  哈尔滨 150001
BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS
ZOU Guangping, LU Jie, CAO Yang, LIU Baojun
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001
引用本文:

邹广平 芦颉 曹扬 刘宝君. 钢质蜂窝夹芯板的弯曲疲劳损伤模型[J]. 金属学报, 2011, 47(9): 1181-1187.
, , , . BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS[J]. Acta Metall Sin, 2011, 47(9): 1181-1187.

全文: PDF(1243 KB)  
摘要: 研究了钢质蜂窝夹芯板的室温四点弯曲疲劳行为, 得到疲劳寿命(S-N)曲线. 结果表明, 在载荷比R=0.20时, 钢蜂窝夹芯板疲劳行为体现明显的方向性. L向芯子排列试件较W向易于承受循环载荷, 疲劳强度极限分别为1369和859 N. 基于等效剪切模量退化理论, 建立了寿命预测和损伤演化模型. 结果发现, L向试件损伤开始萌生的循环次数约占总寿命的86%-90%, W向试件高载荷时为73%, 较低载荷时退化为48%. 在不区分芯子排列方向时, 可分别用二阶多项式和指数模型描述高、低载荷水平的损伤演化规律, 模型体现出较强的材料相关性.
关键词 蜂窝夹芯剪切模量退化寿命预测累积损伤    
Abstract:The four-point bending fatigue behaviors of steel honeycomb sandwich panels were investigated in this paper. The fatigue tests results were presented in fatigue life (S-N) diagrams. The results show that with a load ratio of R=0.20, the fatigue properties of specimens are significantly influenced by honeycomb cell orientations. The L-direction appears more suitable for cyclic loading than W-direction, and the fatigue strengths reach 1369 and 859 N, respectively. Based on the equivalent shear modulus degradation theory, the life prediction and damage evolution models were developed. Obviously, the lives of damage initiation for L-direction specimens are 86%-90% of the total number of cycles, while 73% at high load and reduce to 48% at low load for W-direction specimens. When the cores orientations were not concerned, the second order polynomial model and exponential model can be adopted to describe the damage evolution trends at high and low load levels, respectively. While the prediction models exhibit strong material dependent.
Key wordshoneycomb sandwich    shear modulus degradation    life prediction    cumulative damage
收稿日期: 2011-04-20     
ZTFLH: 

V214.6

 
基金资助:

教育部博士点基金资助项目 20092304110003

作者简介: 邹广平, 男, 1963年生, 教授
[1] Lu T J, He D P, Chen C Q, Zhao C Y, Fang D N, Wang X L. Adv Mech, 2006; 36: 517

(卢天健, 何德坪, 陈常青, 赵长颖, 方岱宁, 王晓林. 力学进展, 2006; 36: 517)

[2] Wei J F, Ji Y Z, Gong B A. Aerosp Mater Technol, 2007; 5: 8

(韦娟芳, 冀有志, 龚博安. 宇航材料工艺, 2007; 5: 8)

[3] Zhang Y C, Wang Z L, Gu J L, Zhang S L. Shipbuilding China, 2009; 50(4): 36

(张延昌, 王自力, 顾金兰, 张世联. 中国造船, 2009; 50(4): 36)

[4] Fu D M, Han J T, Liu J, Fu C G. Aviat Precis Manuf Technol, 2004; 40(3): 14

(符定梅, 韩静涛, 刘 靖, 付晨光. 航空精密制造技术, 2004; 40(3): 14)

[5] Zenkert D, Burman M. Compos Sci Technol, 2009; 69: 785

[6] Kanny K, Mahfuz H. Compos Struct, 2005; 67: 403

[7] Soni S M, Gibson R F, Ayorinde E O. Compos Sci Technol, 2009; 69: 829

[8] Jen Y M, Chang L Y. Int J Fatigue, 2008; 30: 1036

[9] Jen Y M, Chang L Y. Eng Fail Anal, 2009; 16: 1282

[10] Jen Y M, Ko C W, Lin H B. Int J Fatigue, 2009; 31: 455

[11] Mahi A El, Farooq M K, Sahraoui S, Bezazi A. Mater Design, 2004; 25: 199

[12] Belingardi G, Martella P, Peroni L. Composite, 2007; 38A: 1183

[13] Belouettar S, Abbadi A, Azari Z, Belouettar R, Freres P. Compos Struct, 2009; 87: 265

[14] Ferreira J A M, Costa J D M, Reis P N B, Richardson M O W. Compos Struct, 1999; 59: 1461

[15] Salvia M L F, Fournier P P, Vincent L. Int J Fatigue, 1997; 19: 253

[16] Hwang W, Lee C S, Park H C, Han K S. J Adv Mater, 1995; 26: 3

[17] Clark S D, Shenoi R A, Allen H G. Compos Sci Technol, 1999; 59: 471

[18] Abbadi A, Azari Z, Belouettar S, Gilgert J, Freres P. Int J Fatigue, 2010; 32: 1739

[19] Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G, translated by Liu P S, Wang X S, Li Y X. Metal Foams: A Design Guide. Beijing: Metallurgical Industry Press, 2006: 115

(Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G著, 刘培生, 王习述, 李言祥 \译. 泡沫金属设计指南. 北京: 冶金工业出版社, 2006: 115)
[1] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[2] 于慧臣,董成利,焦泽辉,孔凡涛,陈玉勇,苏勇君. 一种TiAl合金的高温蠕变和疲劳行为及其寿命预测方法[J]. 金属学报, 2013, 49(11): 1311-1317.
[3] 张英杰 颜云辉 李永强 李锋. Al质蜂窝夹芯板非线性动力学分析[J]. 金属学报, 2012, 48(8): 995-1004.
[4] 徐滨士 王海斗 朴钟宇 张显程. 再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究[J]. 金属学报, 2011, 47(11): 1355-1361.
[5] 董杰; 陈学东; 范志超; 江慧峰; 陆守香 . 基于微裂纹扩展的疲劳蠕变寿命预测方法[J]. 金属学报, 2008, 44(10): 1167-1170 .
[6] 杨王Yue; 李志文 . θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命[J]. 金属学报, 1999, 35(7): 721-725 .
[7] 丁传富;于辉;吴学仁. 30CrMnSiNi2A高强钢的疲劳小裂纹扩展特性及寿命预测[J]. 金属学报, 1997, 33(3): 277-286.
[8] 赵廷仕. 中碳钢的低周疲劳寿命与塑性应变能[J]. 金属学报, 1993, 29(2): 45-48.