Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1269-1278    DOI: 10.11900/0412.1961.2014.00087
  本期目录 | 过刊浏览 |
PCB-HASL电路板在NaHSO3/Na2SO3溶液中的腐蚀电化学行为
丁康康, 肖葵(), 邹士文, 董超芳, 赵瑞涛, 李晓刚
北京科技大学腐蚀与防护中心, 北京 100083
ELECTROCHEMICAL CORROSION BEHAVIOR OF PCB-HASL IN NaHSO3/Na2SO3 SOLUTION
DING Kangkang, XIAO Kui(), ZOU Shiwen, DONG Chaofang, ZHAO Ruitao, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

丁康康, 肖葵, 邹士文, 董超芳, 赵瑞涛, 李晓刚. PCB-HASL电路板在NaHSO3/Na2SO3溶液中的腐蚀电化学行为[J]. 金属学报, 2014, 50(10): 1269-1278.
Kangkang DING, Kui XIAO, Shiwen ZOU, Chaofang DONG, Ruitao ZHAO, Xiaogang LI. ELECTROCHEMICAL CORROSION BEHAVIOR OF PCB-HASL IN NaHSO3/Na2SO3 SOLUTION[J]. Acta Metall Sin, 2014, 50(10): 1269-1278.

全文: PDF(5571 KB)   HTML
摘要: 

采用电化学阻抗谱(EIS)和扫描Kelvin探针技术(SKP)研究了热风整平无铅喷锡处理印制电路板(PCB-HASL)在模拟电解质0.1 mol/L NaHSO3以及不同pH值的0.1 mol/L NaHSO3/Na2SO3溶液中的腐蚀行为与机理, 探讨了浸泡时间和pH值对其腐蚀机理转变的影响, 通过OM, SEM结合EDS对PCB-HASL表面上腐蚀产物形核和扩展行为进行了观察和分析. 结果表明, PCB-HASL试样在酸性NaHSO3/Na2SO3溶液体系中的腐蚀形式类似点蚀, 浸泡前期腐蚀坑加速扩展, 腐蚀产物主要为Sn的氧化物和硫酸盐. NaHSO3溶液能够活化PCB-HASL试样表面, 且腐蚀坑形核仅发生在浸泡初期. 而在中性或碱性NaHSO3/Na2SO3溶液体系中, PCB-HASL试样表面腐蚀坑形成受到抑制, 电解质溶液通过氧化膜向电极界面的传输过程限制了电极反应速率.

关键词 印制电路板热风整平无铅喷锡NaHSO3溶液电化学腐蚀扫描Kelvin探针    
Abstract

With the innovation of electronic technology, integration and miniaturization become the future developing direction of printed circuit board (PCB). Meanwhile, the corrosion problems of PCB also stand out more clearly, and even trace amounts of corrosion products will have a serious impact on the reliability of PCB. Under the actual condition for use, like sulfur-containing industrial environment, due to the diurnal temperature variations or/and the temperature field fluctuations for PCB itself, condensation phenomenon is likely to occur. Furthermore, as a result of the moisture absorption effect of granular deposit or supersaturated humidity, a layer of electrolyte solution will be formed on the surface of PCB, causing electrochemical corrosion. In this work, electrochemical impedance spectroscopy (EIS) and scanning Kelvin probe (SKP) techniques were used to study the corrosion behavior and mechanism of hot air solder leveling printed circuit boards (PCB-HASL) in a simulated electrolyte 0.1 mol/L NaHSO3 and 0.1 mol/L NaHSO3/Na2SO3 solutions with different pH values, and the influences of immersion time and pH value on the change of corrosion mechanism were discussed. Meanwhile, with the aids of OM, SEM combined with EDS, the nucleation and propagation processes of corrosion products on the surface of PCB-HASL were observed and analyzed. SEM and EDS results showed that the corrosion behavior of PCB-HASL in acid simulation solution was similar to pitting corrosion, and the corrosion pits were in a state of accelerated expansion at the early immersion stage. The corrosion products mainly consisted of oxides and sulfates of Sn. EIS and SKP analysis indicated that the PCB-HASL surface could be activated by NaHSO3 solution and pitting nucleation process only occurred at the early immersion stage. In the neutral or alkaline solution system of NaHSO3/Na2SO3, pitting corrosion couldn't occur, and the transmission of the electrolyte to the electrode interface through the oxide film was the control step of the corrosion reaction.

Key wordsPCB    HASL    NaHSO3 solution    electrochemical corrosion    SKP
收稿日期: 2014-02-25     
ZTFLH:  TG174.4  
基金资助:*国家自然科学基金资助项目51271032
作者简介: null

丁康康, 男, 1990年生, 硕士生

图1  在0.1 mol/L NaHSO3溶液中浸泡不同时间后热风整平无铅喷锡处理印制电路板(PCB-HASL)的表面形貌
图2  PCB-HASL试样表面腐蚀区域覆盖率随时间的变化
图3  PCB-HASL试样经不同时间浸泡后的SEM像与EDS分析
图4  在0.1 mol/L NaHSO3溶液中浸泡不同时间后PCB-HASL试样表面Kelvin电位分布
图5  浸泡不同时间后PCB-HASL试样表面Ekp电位分布Gauss拟合曲线
Time / h m / V s
0 -0.5558 0.0228
0.5 -0.6312 0.0276
3 -0.6024 0.0316
12 -0.5393 0.0349
36 -0.4498 0.0320
120 -0.3197 0.0355
表1  浸泡不同时间后PCB-HASL试样表面Ekp电位分布Gauss拟合结果
图6  在0.1 mol/L NaHSO3溶液中浸泡不同时间后PCB-HASL试样的EIS结果与拟合曲线
图7  在0.1 mol/L NaHSO3溶液中浸泡不同时间的EIS等效电路
Time
h
Rs
Ω·cm2
CPEf
S ? s n 1 ? c m - 2
n1 Rf
Ω·cm2
L
H·cm2
RL
Ω·cm2
CPEdl
S ? s n 2 ? c m - 2
n2 Rct
Ω·cm2
W
S·s5·cm-2
0.5 13.45 6.96×10-6 0.8687 1617 5.48×104 1.30×104 0.000078 0.8639 1014 0.004347
1 14.80 7.62×10-6 0.8798 1291 7.79×104 1.41×104 0.000147 0.8144 627.6 0.007080
2 14.09 1.23×10-5 0.8629 1057 - - 0.000538 0.8778 265.2 0.012620
3 14.33 1.57×10-5 0.8642 856.4 - - 0.001199 0.9109 190.8 0.012550
6 14.35 2.49×10-5 0.8748 769.4 - - 0.001360 1.0000 198.1 0.012980
12 15.02 3.90×10-5 0.8871 4231 - - 0.000966 0.9675 721.2 0.005176
24 11.83 1.07×10-4 0.9312 3229 - - 0.000162 0.8475 7817 -
36 19.26 1.02×10-4 0.9429 3435 - - 0.000141 0.8429 9405 -
72 14.15 1.30×10-4 0.9074 6213 - - 0.000251 0.8375 8179 -
120 18.86 7.82×10-4 0.7614 6418 - - 0.000155 0.9063 10000 -
表2  在0.1 mol/L NaHSO3溶液中浸泡不同时间的PCB-HASL试样的EIS谱拟合结果
图8  不同pH值NaHSO3/Na2SO3溶液体系中PCB-HASL的表面形貌的OM像
图9  不同pH值0.1 mol/L NaHSO3/Na2SO3溶液中PCB-HASL试样的EIS谱与拟合曲线
图10  中性/碱性NaHSO3/Na2SO3缓冲溶液中EIS等效电路
Condition Rs
Ω·cm2
CPEf
S ? s n 1 ? c m - 2
n1 Rf
Ω·cm2
CPEdl
S ? s n 2 ? c m - 2
n2 Rct
Ω·cm2
W
S·s5·cm-2
O
S·s5·cm-2
B
s5
pH=6 15.83 1.35×10-5 0.8881 1914 6.6×10-4 1.0000 230 0.00958 - -
pH=7 8.95 1.87×10-5 0.9146 2532 2.4×10-4 1.0000 702 - 2.89×10-3 3.166
pH=8 12.53 1.49×10-5 0.9270 2332 2.0×10-4 0.7269 3951 - 1.48×10-3 5.851
Na2SO3 9.97 4.41×10-6 0.8467 1409 1.2×10-5 0.8207 64400 - 4.79×10-5 6.190
表3  不同pH值0.1 mol/L NaHSO3/Na2SO3溶液中PCB-HASL试样的EIS拟合结果
[1] Leygraf C, Graedel T.Atmospheric Corrosion. New York: John Wiley&Sons Inc, 2000: 142
[2] Zhao Y, Lin C J, Li Y, Du R G, Wang J R. Acta Phys-Chim Sin, 2007; 23: 1342
[2] (赵 岩, 林昌健, 李 彦, 杜荣归, 王景润. 物理化学学报, 2007; 23: 1342)
[3] Huang H L, Dong Z H, Chen Z Y, Guo X P. Corros Sci, 2011; 53: 1230
[4] Zou S W, Li X G, Dong C F, Ding K K, Xiao K. Electrochim Acta, 2013; 114: 363
[5] Xiao K, Zou S W, Dong C F, Wu J S, Li X G. Sci Technol Rev, 2011; 29: 25
[5] (肖 葵, 邹士文, 董超芳, 吴俊升, 李晓刚. 科技导报, 2011; 29: 25)
[6] Qi H, Ganesan S, Pecht M. Microelectron Reliab, 2008; 48: 663
[7] Shibutani T, Yu Q, Shiratori M, Pecht M G. Microelectron Reliab, 2008; 48: 1033
[8] Fukuda Y, Osterman M, Pecht M. Microelectron Reliab, 2007; 47: 88
[9] Park Y W, Sankara Narayanan T S N, Lee K Y. Tribol Int, 2008; 41: 616
[10] Ammar I A, Darwish S, Khalil M W, Galal A. Materialwissenschaft und Werkstofftechnik, 1983; 14: 330
[11] Jouen S, Hannoyer B, Piana O. Surf Interf Anal, 2002; 34: 192
[12] Muller J. PhD Dissertation, Université Paris Est Marne-La-Vallée, 2010
[13] Lundren G, Wernfors G, Yamaguchi T. Acta Crystallogr, 1982; 38B: 2357
[14] Ahmed M A K, Fjellvag H, Kjekshus A. Acta Chem Scand, 1998; 52: 305
[15] Zou S W, Li X G, Dong C F, Li H Y, Xiao K. Acta Metall Sin, 2012; 48: 687
[15] (邹士文, 李晓刚, 董超芳, 李慧艳, 肖 葵. 金属学报, 2012; 48: 687)
[16] Sun M, Xiao K, Dong C F, Li X G, Zhong P. Acta Metall Sin, 2011; 47: 442
[16] (孙 敏, 肖 葵, 董超芳, 李晓刚, 钟 平. 金属学报, 2011; 47: 442)
[17] Li P H. Master Thesis, University of Science and Technology Beijing, 2011
[17] (李朴华. 北京科技大学硕士学位论文, 2011)
[18] Rohwerder M, Turcu F. Electrochim Acta, 2007; 53: 290
[19] Cao C N,Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 54
[19] (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 54)
[20] Chen Z Y. PhD Dissertation, Huazhong University of Science & Technology, Wuhan, 2010
[20] (陈振宇. 华中科技大学博士学位论文, 武汉, 2010)
[21] Cao B. Master Thesis, Nanjing Technology University, 2007
[21] (曹 斌. 南京工业大学硕士学位论文, 2007)
[22] Zhao W M, Wang Y, Xue J, Wu K Y. Acta Metall Sin, 2005; 41: 178
[22] (赵卫民, 王 勇, 薛 锦, 吴开源. 金属学报, 2005; 41: 178)
[23] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. NewYork: Pergamon Press, 1966: 15
[24] Sasaki T, Kanagawa R, Ohtsuka T, Miura K. Corros Sci, 2003; 45: 847
[25] Yan Z, Xian A P. Trans Nonferrous Met Soc, 2012; 22: 1398
[25] (颜 忠, 冼爱平. 中国有色金属学报, 2012; 22: 1398)
[26] Mori M, Miura K, Sasaki T, Ohtsuka T. Corros Sci, 2002; 44: 887
[27] Chang H, Chen H T, Li M Y, Wang L, Fu Y G. J Electron Mater, 2009; 38: 2170
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[3] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[4] 王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
[5] 刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*[J]. 金属学报, 2014, 50(2): 212-218.
[6] 邹士文,李晓刚,董超芳,李慧艳,肖葵. 霉菌对裸铜和镀金处理的印制电路板腐蚀行为的影响[J]. 金属学报, 2012, 48(6): 687-695.
[7] 生海,董超芳,肖葵,李晓刚. 高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性[J]. 金属学报, 2012, 48(4): 414-419.
[8] 张亚丛 王锦程 吕文泉. Mg-Zn-Y-Zr合金在NaCl溶液中的腐蚀行为[J]. 金属学报, 2011, 47(9): 1174-1180.
[9] 孙敏 肖葵 董超芳 李晓刚 钟平. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47(4): 442-448.