Please wait a minute...
金属学报  2010, Vol. 46 Issue (12): 1488-1494    DOI: 10.3724/SP.J.1037.2010.00227
  论文 本期目录 | 过刊浏览 |
连续冷却过程中含Cu相在钢中析出行为的研究
李闯,王学敏,尚成嘉,郑长安,贺信莱
北京科技大学材料科学与工程学院, 北京 100083
STUDY ON PRECIPITATION BEHAVIOR OF PHASES CONTAINING Cu IN THE Cu–BEARING STEEL IN CONTINUOUS COOLING PROCESS
LI Chuang, WANG Xuemin, SHANG Chengjia, ZHENG Chang’an, HE Xinlai
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

李闯 王学敏 尚成嘉 郑长安 贺信莱. 连续冷却过程中含Cu相在钢中析出行为的研究[J]. 金属学报, 2010, 46(12): 1488-1494.
, , , , . STUDY ON PRECIPITATION BEHAVIOR OF PHASES CONTAINING Cu IN THE Cu–BEARING STEEL IN CONTINUOUS COOLING PROCESS[J]. Acta Metall Sin, 2010, 46(12): 1488-1494.

全文: PDF(3364 KB)  
摘要: 利用热模拟技术研究了一系列含Cu钢在不同冷速下的硬度变化. 借助金相和高分辨透射电镜研究了连续冷却过程中的含Cu相析出行为及其对硬度的影响. 结果表明: 在连续冷却过程中Fe-Cu合金中会发生第二相析出, 从而造成硬化. 第二相析出为富Cu过渡相, 以相间沉淀方式析出, 析出行为与冷速和Cu含量有关, 当冷却速率为0.1-1 ℃/s时, 随着冷却速率的增加第二相析出物变得更加细小且密度更大, 当冷却速率为1 ℃/s时析 出物密度最大. 当冷却速率超过1 ℃/s后, 随着冷却速率的增加析出物逐渐减少. 当样品以10 ℃/s冷速冷却时, 几乎没有析出物产生. 富Cu相析出状况对合金起明显的强化作用. 当Cu含量低于1%时, 析出现象并不明显.
关键词 含Cu钢 连续冷却 相间沉淀 富Cu相    
Abstract:The hardening behavior of five Cu–bearing steels during continuous cooling has been studied with the aid of thermo–simulation technique. Optical microscope (OM) and high resolution transmission electron microscopy (HRTEM) were employed to investigate the influence of cooling rate on the precipitation behavior in these steels and their hardness. The results show that during the continuous cooling the second phase precipitates occur in these steels and cause the precipitation hardening. These precipitates are proved to be Cu–rich phases and formed by the way of inter–phase precipitation. The precipitation behavior and hardening effect could be affected by cooling rate and copper content in these steels. When the steels are cooled at a cooling rate between 0.1—1 ℃/s, the second phase precipitates become finer and denser with the increase of cooling rate. Only when the cooling rate is 1 ℃/s the density of the second phase precipitates is the largest. When the cooling rate is quicker than 1 ℃/s, increasing the cooling rate leads to the precipitates being finer and fewer. When the samples are cooled at a rate of 10 ℃/s, there are few precipitates in samples. The Cu–rich phase is the main cause to strengthen these steels. It is also found that when the copper content is less than 1%, the precipitation behavior is unobvious.
Key wordsCu–bearing steel    continuous cooling    inter–phase precipitation    Cu–rich phase
收稿日期: 2010-05-11     
ZTFLH: 

TG142.1

 
基金资助:

国家高技术研究发展计划资助项目2008AA03Z501

作者简介: 李闯, 男, 1981年生, 博士生
[1]S. S. Ghasemi Banadkouki, D. P. Dunne. ISIJ Int, 2006; 46: 759 [2]D. P. Dunne, S. S. Ghasemi Banadkouki, D. Yu. ISIJ Int, 1996; 36: 324 [3] Wang X M, Shang C J, Yang S W. Acta Metall Sin, 2005; 41: 1256 (王学敏, 尚成嘉, 杨善武. 金属学报, 2005; 41: 1256. ) [4] Tompson S W, Krauss G. Metall Trans A, 1996; 27A: 1573 [5] S. K. Dhua, Amitava Ray a, D.S. Sarma. Mater Sci EngA. 2001;318: 197 [6] M. T. Miglin, J. P. Hirth, A. R. Rosenfield et al. Metall Trans A, 1986; 17A: 791 [7] Honeycombe W K. translated by FU J Y. Steel-microstructure and properties. Beijing: Metallurgical Industry Press, 1985:77 (Honeycombe W K著,傅俊岩,译. 钢的显微组织和性能. 北京:冶金工业出版社, 1985: 77) [8] Shi D K, Li D C, Meng Q K. Journal of Xi’an Jiaotong University, 1994; 28: 32 (石德坷, 李涤尘, 孟庆奎. 西安交通大学学报, 1994; 28: 32) [9] Thompson S W, Krauss G, Tseng C C. Journal of Materials Science Letters, 1998, 17: 2075 [10] Li H Y, Zhang J F, Geng J F. Material & Heat Treatment. 2006, 35: 38 (李红英,张建飞,耿进峰.热加工工艺, 2006, 35: 38)
[1] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[2] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[3] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[4] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[5] 王蕾,唐荻,宋勇. 扩散过程控制下的奥氏体连续冷却转变*[J]. 金属学报, 2015, 51(11): 1341-1348.
[6] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[7] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[8] 徐刚 楚大锋 蔡琳玲 周邦新 王伟 彭剑超. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47(7): 905-911.
[9] 迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.
[10] 柳得橹; 傅杰; 林昌; 柯俊 . 高纯净微合金钢的连续冷却转变与组织细化[J]. 金属学报, 1999, 35(9): 923-927 .
[11] 刘东升; 王国栋; 刘相华; 宋丹 . 奥氏体变形对低碳Mn-B-Nb-Ti钢连续冷却相变的影响[J]. 金属学报, 1999, 35(8): 816-822 .
[12] 刘振宇;王国栋;张强. 形变奥氏体连续冷却相变后α晶粒尺寸的预测[J]. 金属学报, 1995, 31(22): 468-172.