Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1341-1348    DOI: 10.11900/0412.1961.2015.00305
  本期目录 | 过刊浏览 |
扩散过程控制下的奥氏体连续冷却转变*
王蕾,唐荻(),宋勇
AUSTENITE TRANSFORMING IN CONTINUOUS COOLING PROCESS UNDER DIFFUSION CONTROL MODEL
Lei WANG,Di TANG(),Yong SONG
Engineeing Research Institute, University of Science and Technology Beijing, Beijing 100083
引用本文:

王蕾,唐荻,宋勇. 扩散过程控制下的奥氏体连续冷却转变*[J]. 金属学报, 2015, 51(11): 1341-1348.
Lei WANG, Di TANG, Yong SONG. AUSTENITE TRANSFORMING IN CONTINUOUS COOLING PROCESS UNDER DIFFUSION CONTROL MODEL[J]. Acta Metall Sin, 2015, 51(11): 1341-1348.

全文: PDF(883 KB)   HTML
摘要: 

建立了扩散过程控制下的奥氏体连续冷却转变模型, 用于描述先共析铁素体界面位置随温度的变化规律. 模型考虑了界面移动过程中可能出现的软碰撞情况以及冷速对界面奥氏体侧C浓度的影响. 运用该模型对不同初始C浓度、奥氏体晶粒尺寸和冷速下的奥氏体连续冷却转变过程进行模拟, 得到不同冷却条件下的先共析铁素体界面位置、界面奥氏体侧的C扩散长度以及C浓度分布随温度的变化规律. 对晶粒尺寸为17 μm的Fe-0.17C合金进行不同冷速下的转变过程模拟, 所得结果与文献吻合较好.

关键词 扩散控制奥氏体连续冷却先共析铁素体界面位置    
Abstract

Austenite-ferrite transformation in low carbon steels has a fundamental role in phase transformation and is industrial importance. The kinetics of austenite transformation can be described by the kinetics of austenite-ferrite interface migration. Two classical models, the diffusion-controlled growth model and the interface-controlled model, can be used to describe the growth of proeutectoid ferrite during ga isothermal transformation. The austenite transformation in continuous cooling process is more common in production. In continuous cooling process, the equilibrium carbon concentrations in austenite and ferrite change with temperature and the kinetics of austenite transformation is different from that in isothermal process. Based on the models for ga isothermal transformation, a diffusion control model is established for the growth of proeutectoid ferrite during the decomposition of supersaturated austenite in continuous cooling process. The interface position of proeutectoid ferrite varying with temperature is described with the model. The soft impingement effect at the later stage of transformation is considered. The carbon concentration at the austenite side of interface is difficult to reach the equilibrium carbon concentration when the cooling rate is high. A parameter as the function of cooling rate is proposed to modify the carbon concentration at the austenite side of interface. The polynomial diffusion field approximation is assumed in front of the interface. Simulation is done by utilizing the model to analyze the growth of proeutectoid ferrite in continuous cooling process with different bulk concentrations, austenite grain sizes and cooling rates. The interface position of proeutectoid ferrite as a function of temperature or time is obtained under different cooling conditions. Also, carbon diffusion length at the austenite side of interface as a function of time and carbon profile as a function of interface position are obtained under different cooling conditions. Furthermore, the proeutectoid ferrite fraction as a function of temperature can be acquired. The change law of carbon diffusion length with interface position and the change law of interface position with square root of time are discussed. The simulation results of diffusion control for austenite transforming in Fe-0.17C (mass fraction, %) alloy with grain size of 17 mm and different cooling rates show a good agreement with the literature results previously reported.

Key wordsdiffusion control    austenite    continuous cooling    proeutectoid ferrite    interface position
    
基金资助:*中央高校基本科研业务费专项资金资助项目FRF-IC-14-005
图 1  扩散过程控制的奥氏体连续冷却转变界面移动和C浓度分布示意图
图 2  不同冷速下的铁素体体积分数计算值和文献值[24]对比
图3  相界面位置随温度变化曲线
图 4  奥氏体晶粒尺寸为30 mm的Fe-0.3C合金在冷速为1 ℃/s时的界面奥氏体侧C扩散长度和奥氏体晶粒中心C浓度随温度变化曲线
图 5  晶粒尺寸为15 mm的Fe-0.3C合金在不同冷却速率下的C扩散分布曲线
图 6  界面位置和C扩散长度随时间变化曲线
图 7  奥氏体晶粒尺寸为15 mm的Fe-0.3C合金在冷速为1和5 ℃/s时的界面位置随温度的变化曲线
图 8  Fe-0.3C合金在冷速为1和5 ℃/s时的界面位置和C扩散长度随时间变化曲线
图 9  晶粒尺寸为30 μm 的Fe-0.1C, Fe-0.3C和Fe-0.5C合金在不同冷速下的C扩散长度随界面位置变化曲线
图 10  Fe-0.1C, Fe-0.3C和Fe-0.5C合金在不同晶粒尺寸和冷速下的界面位置随t1/2变化曲线
[1] Liu Z Y, Yang Z G, Li Z D, Liu Z Q, Zhang C. Acta Metall Sin, 2010; 46: 390 (刘志远, 杨志刚, 李昭东, 刘振清, 张 弛. 金属学报, 2010; 46: 390)
[2] Svoboda J, Fischer F, Fratzl P, Gamsjager E, Simha N K. Acta Mater, 2001; 49: 1249
[3] Bos C, Sietsma J. Scr Mater, 2007; 57: 1085
[4] Capdevila C, Caballero F, de Andres C G. Metall Mater Trans, 2001; 32A: 661
[5] Chen H, van der Zwaag S. J Mater Sci, 2011; 46: 1328
[6] Fazeli F, Militzer M. Metall Trans, 2005; 36A: 1395
[7] Gamsjager E, Militzer M, Fazeli F, Svoboda J, Fischer F D. Compu Mater Sci, 2006; 37: 94
[8] Purdy G, ?gren J, Borgenstam A, Brechet Y, Enomoto M, Furuhara T, Gamsjager E, Gouné M, Hillert M, Hutchinson C, Militzer M, Zurob H. Metall Mater Trans, 2011; 42A: 3703
[9] Bhadeshia H K D H. Prog Mater Sci, 1985; 29: 321
[10] van der Ven A, Delaey L. Prog Mater Sci, 1996; 29: 181
[11] Zener C. J Appl Phys, 1949; 20: 950
[12] Christian J W. The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 2002: 1
[13] Sietsma J, van der Zwaag S. Acta Mater, 2004; 52: 4143
[14] Xu Z Y. Principle of Phase Transformation. Beijing: Science Press, 1988: 1 (徐祖耀. 相变原理. 北京: 科学出版社, 1988: 1)
[15] Fan K, Liu F, Liu X N, Zhang Y X, Yang G C, Zhou Y H. Acta Mater, 2008; 56: 4309
[16] Offerman S E, van Dijk N H, Sietsma J, Lauridsen E M, Margulies L, Grigull S, Poulsen H F, van der Zwaag S. Acta Mater, 2004; 52: 4757
[17] Wang H F, Liu F, Zhang T, Yang G C, Zhou Y H. Acta Mater, 2009; 57: 3072
[18] Krielaart G P, Sietsma J, van der Zwaag S. Mater Sci Eng, 1997; 237: 216
[19] Serajzadeh S. J Mater Process Technol, 2004; 146: 311
[20] Hawbolt E, Chau B, Brimacombe J. Metall Trans, 1985; 16A: 565
[21] Johnson J W, Mehl R F. Trans AIME, 1939; 135: 416
[22] Avrami M. J Chem Phys, 1939; 7: 1103
[23] ?gren J. Acta Metall Mater, 1982; 30: 841
[24] Kumar M, Sasikumar R, Nair P K. Acta Mater, 1998; 46: 6291
[25] Offerman S, van Dijk N, Sistsma J, Grigull S, Lauridsen E M, Margulies L, Poulsen H F, Rekveldt M T, van der Zwaag S. Science, 2002; 298: 1003
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[10] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[11] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[14] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[15] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.